K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2023

Gõ đề có sai không ạ?

\(\left\{{}\begin{matrix}\sqrt{3+2x^2y-x^4y^2}+x^4\left(1-2x^2\right)=y^4\\1+\sqrt{1+\left(x-y\right)^2}=x^3\left(x^3-x+2y^2\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{4-\left(1-x^2y\right)^2}=2x^6-x^4+y^4\\-\sqrt{1+\left(x-y\right)^2}=1-x^6+x^4-2x^3y^2\end{matrix}\right.\)

Cộng theo vế HPT2

\(\sqrt{4-\left(1-x^2y\right)^2}-\sqrt{1+\left(x-y\right)^2}=\left(x^3-y^2\right)^2+1\)

\(\Leftrightarrow\sqrt{4-\left(1-x^2y\right)^2}=\sqrt{1+\left(x-y\right)^2}+\left(x^3-y^2\right)^2+1\) (1)

Có:

\(\left\{{}\begin{matrix}\sqrt{4-\left(1-x^2y\right)^2}\le2\\\sqrt{1+\left(x-y\right)^2}+\left(x^2-y^2\right)^2+1\ge2\end{matrix}\right.\)

\(\Rightarrow\) (1) xảy ra \(\Leftrightarrow\) \(\left\{{}\begin{matrix}\sqrt{4-\left(1-x^2y\right)^2}=2\\\sqrt{1+\left(x-y\right)^2}=1\\\left(x^3-y^2\right)^2=0\end{matrix}\right.\Leftrightarrow x=y=1\)

 

 

AH
Akai Haruma
Giáo viên
8 tháng 2 2023

Lời giải:

Nhân chéo 2 pt ta có:

$20y^2(x^2-y^2)=3x^2(x^2+y^2)$

$\Leftrightarrow 3x^4+20y^4-17x^2y^2=0$

$\Leftrightarrow (3x^2-5y^2)(x^2-4y^2)=0$

$\Rightarrow x=\pm \sqrt{\frac{5}{3}}y$ hoặc $x=\pm 2y$

Đến đây thay vào pt ban đầu để tìm $x,y$

8 tháng 2 2023

ĐKXĐ : \(x;y\ne0\)

Ta có \(\dfrac{y}{x}-\dfrac{2x}{y}=\dfrac{-5}{2}-\dfrac{2}{xy}\)

\(\Leftrightarrow\dfrac{y^2-2x^2}{xy}=\dfrac{-5xy-4}{2xy}\)

\(\Leftrightarrow2y^2-4x^2+5xy=-4\) (1) 

Kết hợp \(x^2+xy-y^2=5\) (2)

ta có : \(-5.\left(2y^2-4x^2+5xy\right)=4\left(x^2+xy-y^2\right)\) 

\(\Leftrightarrow16x^2-29xy-6y^2=0\)

\(\Leftrightarrow16x^2-32xy+3xy-6y^2=0\)

\(\Leftrightarrow\left(x-2y\right)\left(16x+3y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2y\\x=-\dfrac{3y}{16}\end{matrix}\right.\)

Thay \(x=-\dfrac{3y}{16}\) vào (2) ta được 

\(\dfrac{9y^2}{256}-\dfrac{3y^2}{16}-y^2=5\)

\(\Leftrightarrow y^2=-\dfrac{256}{59}\Leftrightarrow y\in\varnothing\) (loại) 

Khi x = 2y thay vào (2) ta được 

4y2 + 2y2 - y2 = 5

\(\Leftrightarrow y=\pm1\) (tm)

Với y = 1 => x = 2

y = -1 => x = -2

Vậy (x;y) = (2;1) ; (-2;-1) 

8 tháng 2 2023

a) Ta đặt mẫu chung là: abcd (a khác 0)

- Có 9 cách chọn a

- Có 9 cách chọn b

- Có 8 cách chọn c

- Có 7 cách chọn d

Ta lập được là: 9 x 9 x 8 x 7 = 4536 (số)

b) Ta đặt mẫu chung là: abcd

- Có 5 cách chọn a

- Có 4 cách chọn b

- Có 3 cách chọn c

- Có 2 cách chọn d

Ta lập được là: 5 x 4 x 3 x 2 = 120 (số)

c) Ta lập dãy số: 1000; 1005; 1010;...; 9995

Quy luật: Mỗi số hạng liên tiếp liền kề sẽ cách nhau 5 đơn vị

Áp dụng công thức dãy số cách đều, ta có số số hạng là:

(9995 - 1000) : 5 + 1 = 1800 (số)

d) Ta đặt mẫu chung là: abcd (d = 0 hoạc 5)

Trường hợp d = 0

- Có 9 cách chọn a

- Có 8 cách chọn b

- Có 7 cách chọn c

Trong trường hợp này, ta lập được là: 9 x 8 x 7 = 504 (số)

Trường hợp d = 5

- Có 8 cách chọn a

- Có 8 cách chọn b

- Có 7 cách chọn c

Trong trường hợp này, ta lập được là: 8 x 8 x 7 = 448 (số)

Ta lập được là: 504 + 448 = 952 (số)

Đ/S

HT

8 tháng 2 2023

`[x+35]/1984-[x+30]/1989+[x+19]/2000+[x+23]/[1996=-2`

`<=>[x+35]/1984+1-[x+30]/1989-1+[x+19]/2000+1+[x+23]/1996+1=0`

`<=>[x+2019]/1984-[x+2019]/1989+[x+2019]/2000+[x+2019]/1996=0`

`<=>(x+2019)(1/1984-1/1989+1/2000+1/1996)=0`

  `=>x+2019=0`

`<=>x=-2019`

8 tháng 2 2023

\(\dfrac{x+35}{1984}-\dfrac{x+30}{1989}+\dfrac{x+19}{2000}+\dfrac{x+23}{1996}\text{=}-2\)

\(\Leftrightarrow\dfrac{x+35}{1984}-\dfrac{x+30}{1989}+\dfrac{x+19}{2000}+\dfrac{x+23}{1996}+3-1\text{=}0\)

\(\Leftrightarrow\left(\dfrac{x+35}{1984}+1\right)-\left(\dfrac{x+30}{1989}+1\right)+\left(\dfrac{x+19}{2000}+1\right)+\left(\dfrac{x+23}{1996}+1\right)\text{=}0\)

\(\Leftrightarrow\dfrac{x+2019}{1984}-\dfrac{x+2019}{1989}+\dfrac{x+2019}{2000}+\dfrac{x+2019}{1996}\text{=}0\)

\(\Leftrightarrow\left(x+2019\right)\left(\dfrac{1}{1984}-\dfrac{1}{1989}+\dfrac{1}{2000}+\dfrac{1}{1996}\right)\text{=}0\)

\(\Leftrightarrow\left(x+2019\right)\text{=}0\)

\(\Leftrightarrow x\text{=}-2019\)

0
10 tháng 2 2023

không biết :))))

5 tháng 2 2023

Hàm số đạt min trên R <=> a > 0 

ymin = 2 <=> \(\dfrac{-\Delta}{4a}=2\Leftrightarrow\dfrac{4ac-b^2}{4a}=2\Leftrightarrow b^2-4ac+8a=0\)

\(\Leftrightarrow b^2=4a.\left(c-2\right)\) (1) 

Lại có (p) cắt (d) : y = -2x + 6 tại hoành độ là 2;10

=> Đi qua điểm A(2;2) ; B(10;-14)

hay ta có 2 = a.22 + b.2 + c 

<=> 4a + 2b + c = 2

<=> c - 2 = -4a - 2b (2)

Tương tự : -14 = a.102 + b.10 + c

<=> 100a + 10b + c = -14  (3)

Thay (2) vào (1) ta được \(b^2=4a.\left(-4a-2b\right)\Leftrightarrow\left(b+4a\right)^2=0\Leftrightarrow b=-4a\)

Khi đó (3) <=> 60a + c = -14 (4) 

(2) <=> c - 4a = 2 (5) 

Từ (5) ; (4) => \(\left\{{}\begin{matrix}a=-\dfrac{1}{4}\\c=1\end{matrix}\right.\) 

\(b=-4a=\left(-4\right).\dfrac{-1}{4}=1\)

Vậy \(y=-\dfrac{1}{4}x^2+x+1\) (loại) do a > 0

=> Không có hàm số nào thỏa mãn 

3 tháng 2 2023

1) Áp dụng bđt Cauchy cho 3 số dương ta có

 \(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{x}+x^3\ge4\sqrt[4]{\dfrac{1}{x}.\dfrac{1}{x}.\dfrac{1}{x}.x^3}=4\) (1)

\(\dfrac{3}{y^2}+y^2\ge2\sqrt{\dfrac{3}{y^2}.y^2}=2\sqrt{3}\) (2)

\(\dfrac{3}{z^3}+z=\dfrac{3}{z^3}+\dfrac{z}{3}+\dfrac{z}{3}+\dfrac{z}{3}\ge4\sqrt[4]{\dfrac{3}{z^3}.\dfrac{z}{3}.\dfrac{z}{3}.\dfrac{z}{3}}=4\sqrt{3}\) (3)

Cộng (1);(2);(3) theo vế ta được

\(\left(\dfrac{3}{x}+\dfrac{3}{y^2}+\dfrac{3}{z^3}\right)+\left(x^3+y^2+z\right)\ge4+2\sqrt{3}+4\sqrt{3}\)

\(\Leftrightarrow3\left(\dfrac{1}{x}+\dfrac{1}{y^2}+\dfrac{1}{z^3}\right)\ge3+4\sqrt{3}\)

\(\Leftrightarrow P\ge\dfrac{3+4\sqrt{3}}{3}\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{x}=x^3\\\dfrac{3}{y^2}=y^2\\\dfrac{3}{z^3}=\dfrac{z}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\sqrt[4]{3}\\z=\sqrt{3}\end{matrix}\right.\) (thỏa mãn giả thiết ban đầu)

 

3 tháng 2 2023

2) Ta có \(4\sqrt{ab}=2.\sqrt{a}.2\sqrt{b}\le a+4b\)

Dấu"=" khi a = 4b

nên \(\dfrac{8}{7a+4b+4\sqrt{ab}}\ge\dfrac{8}{7a+4b+a+4b}=\dfrac{1}{a+b}\)

Khi đó \(P\ge\dfrac{1}{a+b}-\dfrac{1}{\sqrt{a+b}}+\sqrt{a+b}\)

Đặt \(\sqrt{a+b}=t>0\) ta được

\(P\ge\dfrac{1}{t^2}-\dfrac{1}{t}+t=\left(\dfrac{1}{t^2}-\dfrac{2}{t}+1\right)+\dfrac{1}{t}+t-1\)

\(=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\)

Có \(\dfrac{1}{t}+t\ge2\sqrt{\dfrac{1}{t}.t}=2\) (BĐT Cauchy cho 2 số dương)

nên \(P=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\ge\left(\dfrac{1}{t}-1\right)^2+1\ge1\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{t}-1=0\\t=\dfrac{1}{t}\end{matrix}\right.\Leftrightarrow t=1\)(tm)

khi đó a + b = 1

mà a = 4b nên \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)

Vậy MinP = 1 khi \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)