Cho tam giác ABC vẽ một đường thẳng qua A và vuông góc BC tại M trên cạnh AC lấy điểm D Vẽ đường thẳng qua D và vuông góc BC tại N
a, Viết tên các tâm giác có trong hình vẽ
b, Chứng minh MAC=NDC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
82x+1 – 8x = 3584
=> 8x+1 = 3584
8x+1 = 84
x = 4-1
x = 3
Chúc bạn học tốt
\(\dfrac{5}{2}\) - \(\dfrac{3}{2}\) \(\times\)(\(x\) - 2) = 2
\(\dfrac{3}{2}\) \(\times\)(\(x\) - 2) = \(\dfrac{5}{2}\) - 2
\(\dfrac{3}{2}\) \(\times\) (\(x\) - 2) = \(\dfrac{1}{2}\)
\(x\) - 2 = \(\dfrac{1}{2}\) : \(\dfrac{3}{2}\)
\(x\) - 2 = \(\dfrac{1}{3}\)
\(x\) = \(\dfrac{1}{3}\) + 2
\(x\) = \(\dfrac{7}{3}\)
\(\dfrac{5}{2}-\dfrac{3}{2}\cdot\left(x-2\right)=2\\ \Rightarrow\dfrac{5}{2}-\dfrac{3}{2}x+\dfrac{6}{2}=2\\ \Rightarrow\dfrac{5}{2}-\dfrac{3}{2}x=2-3\\ \Rightarrow\dfrac{5}{2}-\dfrac{3}{2}x=-1\\ \Rightarrow\dfrac{3}{2}x=\dfrac{5}{2}-\left(-1\right)\\ \Rightarrow\dfrac{3}{2}x=\dfrac{7}{2}\\ \Rightarrow x=\dfrac{7}{2}:\dfrac{3}{2}\\ \Rightarrow x=\dfrac{7}{3}\)
(x - 13 + y)2 + (x - 6 - y)2 ≥ 0 + 0 = 0
Vì dấu "=" xảy ra nên x - 13 + y = 0 và x - 6 - y = 0
x + y = 13 và x - y = 6
x = (13 - 6) : 2 = 3,5
y = 13 - 3,5 = 9,5
Vậy x = 3,5 và y = 9,5
(\(x\) - 13 + y)2 + (\(x\) - 6 - y)2 = 0
(\(x\) - 13 + y)2 ≥ 0 ∀ \(x;y\)
(\(x-6-y\))2 ≥ 0 ∀ \(x;y\)
⇒(\(x-13+y\))2 + (\(x\) - 6- y)2 = 0
⇔ \(\left\{{}\begin{matrix}x-13+y=0\\x-6-y=0\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x-6-y=0\\x-13+y+x-6-y=0\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}y=x-6\\2x=19\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=\dfrac{19}{2}\\y=\dfrac{19}{2}-6\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=\dfrac{19}{2}\\y=\dfrac{7}{2}\end{matrix}\right.\)
|5 - \(\dfrac{2}{3}\)\(x\)| + |\(\dfrac{2}{3}\)y - 4| =0
|5 - \(\dfrac{2}{3}\)\(x\)| ≥ 0 ∀ \(x\); |\(\dfrac{2}{3}\)y - 4| ≥ 0 ∀ y
⇒ |5 - \(\dfrac{2}{3}\)\(x\)| + |\(\dfrac{2}{3}\)y - 4| = 0 ⇔ \(\left\{{}\begin{matrix}5-\dfrac{2}{3}x=0\\\dfrac{2}{3}y-4=0\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=\dfrac{15}{2}\\y=6\end{matrix}\right.\)
-1\(\dfrac{1}{2}\) = - (1\(\dfrac{1}{2}\)) = - \(\dfrac{2+1}{2}\) = - \(\dfrac{3}{2}\)
Chọn b, - \(\dfrac{3}{2}\)
\(\dfrac{5}{6}\) - (\(\dfrac{3}{4}\) + \(\dfrac{7}{8}\) - \(x\)) = 10 - | \(\dfrac{1}{3}\) - \(\dfrac{1}{2}\)|
\(\dfrac{5}{6}\) - (\(\dfrac{13}{8}\)- \(x\)) = 10 - |-\(\dfrac{1}{6}\)|
\(\dfrac{5}{6}\) - \(\dfrac{13}{8}\) + \(x\) = 10 + \(\dfrac{1}{6}\)
- \(\dfrac{19}{24}\) + \(x\) = \(\dfrac{61}{6}\)
\(x\) = \(\dfrac{61}{6}\) + \(\dfrac{19}{24}\)
\(x\) = \(\dfrac{263}{24}\)
\(A=\left|x+1\right|-3\\ min_A=-3.khi.x+1=0\Leftrightarrow x=-1\\ B=-\left|x-\dfrac{3}{7}\right|-\dfrac{1}{4}\\ max_B=-\dfrac{1}{4}.khi.\left(x-\dfrac{3}{7}\right)=0\Leftrightarrow x=\dfrac{3}{7}\)
a)
A = |x + 1| - 3 ≥ 0 - 3 = -3
Dấu "=" xảy ra khi x + 1 = 0 hay x = -1
Do đó A đạt GTNN là -3 khi x = -1
b)
\(B=-\left|x-\dfrac{3}{7}\right|-\dfrac{1}{4}\le-0-\dfrac{1}{4}=-\dfrac{1}{4}\)
Dấu "=" xảy ra khi khi \(x-\dfrac{3}{7}=0\) hay \(x=\dfrac{3}{7}\)
Do đó B đạt GTLN là \(-\dfrac{1}{4}\) khi \(x=\dfrac{3}{7}\)