\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) với a>0, b>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(N=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)...\left(\frac{1}{2014}-1\right)\left(\frac{1}{2015}-1\right)\)
\(=-\frac{1}{2}\left(-\frac{2}{3}\right)....\left(-\frac{2013}{2014}\right)\left(-\frac{2014}{2015}\right)\)
\(=\frac{1}{2015}\)
\(N=\left(\frac{1}{2}-1\right).\left(\frac{1}{3}-1\right)....\left(\frac{1}{2015}-1\right)\)
\(=-\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right)....\left(1-\frac{1}{2015}\right)\)
\(=-\frac{1}{2}.\frac{2}{3}...\frac{2014}{2015}\)
\(=\frac{-1}{2015}\)
Ta có:\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(\Leftrightarrow x^2+y^2\ge2xy\Leftrightarrow\left(x-y\right)^2\ge0\)(đúng) \(\Rightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)(1)
Mặt khác: \(\frac{\left(x+y\right)^2}{2}\ge2xy\Leftrightarrow\left(x+y\right)^2\ge4xy\Leftrightarrow x^2+y^2\ge2xy\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\)(đúng) \(\Rightarrow\frac{\left(x+y\right)^2}{2}\ge2xy\) (2)
Từ (1) và (2) => đpcm
A)\(\left|x\right|=\left|\frac{-5}{7}\right|\Rightarrow\left|x\right|=\frac{5}{7}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{5}{7}\\x=\frac{-5}{7}\end{cases}}\)
B)Mình ko hiểu đề bài cho lắm. Sorry nha!!
\(a,|x|=|-\frac{5}{7}|\)
\(\Leftrightarrow|x|=\frac{5}{7}\)
\(\Leftrightarrow x=\pm\frac{5}{7}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{7}\\x=-\frac{5}{7}\end{cases}}\)
\(b,x=a-\frac{4}{5}\)
\(A,\)Để X là số dương \(\Rightarrow x>0\Rightarrow a-\frac{4}{5}>0\Rightarrow a>\frac{4}{5}\)
B)Để X là số âm \(\Rightarrow x< 0\Rightarrow a-\frac{4}{5}< 0\Rightarrow a< \frac{4}{5}\)
C)Để X không phải số dương hay số âm \(\Rightarrow x=0\Rightarrow a-\frac{4}{5}=0\Rightarrow a=\frac{4}{5}\)
với a,b,c lớn thì \(\frac{1}{\left(a+2b+c\right)^3}\) nhỏ, \(a^3+8b^3+c^3\) lớn => P ko có max
\(P=\frac{a^3+8b^3+c^3}{\left(a+2b+c\right)^3}=\left(\frac{a}{a+2b+c}\right)^3+\left(\frac{2b}{a+2b+c}\right)^3+\left(\frac{c}{a+2b+c}\right)^3\)
Đặt \(\left(x;y;z\right)\rightarrow\left(\frac{a}{a+2b+c};\frac{2b}{a+2b+c};\frac{c}{a+2b+c}\right)\)\(\Rightarrow\)\(x+y+z=1\)
\(P=x^3+y^3+z^3=\frac{x^4}{x}+\frac{y^4}{y}+\frac{z^4}{z}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x+y+z}\ge\frac{\frac{\left(x+y+z\right)^4}{9}}{x+y+z}=\frac{1}{9}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=\frac{1}{3}\) hay \(a=2b=c\)
A= 2xyz - xy - yz - zx +1
= z(xy-1) - (xy-1) + zy(x-1) - z(x-1)
= (z-1)(xy-1) + z(x-1)(y-1)
Do x,y,z >1 nên A>0 suy ra đpcm
nguồn:Cho A= 2xyz - xy - yz - zx +1. Chứng minh A>0 với mọi x>1, y>1, z>1.
A= 2xyz - xy - yz - zx +1
= z(xy-1) - (xy-1) + zy(x-1) - z(x-1)
= (z-1)(xy-1) + z(x-1)(y-1)
Do x,y,z >1 nên A>0 suy ra đpcm
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\)\(\frac{b.\left(a+b\right)}{ab.\left(a+b\right)}+\frac{a.\left(a+b\right)}{ab.\left(a+b\right)}\ge\frac{4ab}{ab.\left(a+b\right)}\)
\(\Leftrightarrow\) \(ab+b^2+a^2+ab\ge4ab\)
\(\Leftrightarrow\)\(a^2+b^2+2ab-4ab\ge0\)
\(\Leftrightarrow\)\(a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\)\(\left(a-b\right)^2\ge0\) ( đpcm )
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\left(true\right)\)