Tính A: A=5/2*1+4/1*11+3/11*2+1/2*15+13/15*4+5/4*33+2/33*5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{1001\cdot1003}\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{1001}-\dfrac{1}{1003}\)
\(=1-\dfrac{1}{1003}< 1\)
a: Những tia trên hình vẽ là Ex,Ey,Em,En,Ct,CK,Cn
Đoạn thẳng: EK,EC,CK
b: Các cặp tia đối nhau là:
Ex;Ey
Kx;Ky
Cn;CE
CK,Ct
\(A=\dfrac{1}{2}+\dfrac{3}{2}+\left(\dfrac{3}{2}\right)^2+...+\left(\dfrac{3}{2}\right)^{2023}\)
Đặt: \(C=\dfrac{3}{2}+\left(\dfrac{3}{2}\right)^2+...+\left(\dfrac{3}{2}\right)^{2023}\)
\(\dfrac{3}{2}C=\left(\dfrac{3}{2}\right)^2+\left(\dfrac{3}{2}\right)^3+...+\left(\dfrac{3}{2}\right)^{2024}\)
\(\dfrac{3}{2}C-C=\left(\dfrac{3}{2}\right)^2+\left(\dfrac{3}{2}\right)^3+...+\left(\dfrac{3}{2}\right)^{2024}-\dfrac{3}{2}-\left(\dfrac{3}{2}\right)^2-...-\left(\dfrac{3}{2}\right)^{2023}\)
\(\dfrac{1}{2}C=\left(\dfrac{3}{2}\right)^{2024}-\dfrac{3}{2}\)
\(C=2\left(\dfrac{3}{2}\right)^{2024}-3\)
\(\Rightarrow A=\dfrac{1}{2}+2\left(\dfrac{3}{2}\right)^{2024}-3\)
\(=2\left(\dfrac{3}{2}\right)^{2024}-\dfrac{5}{2}\)
\(\Rightarrow A-B=2\left(\dfrac{3}{2}\right)^{2024}-\dfrac{5}{2}-2\left(\dfrac{3}{2}\right)^{2024}=-\dfrac{5}{2}\)
Xác suất thực nghiệm không phải mặt 4 chấm là:
\(\dfrac{40-13}{40}=\dfrac{27}{40}\)
a) O nằm giữa A và B nên:
\(AB=OA+OB\)
\(\Rightarrow OA=1,5+3=4,5\left(cm\right)\)
b) C nằm giữa O và B
\(OB=OC+BC\)
\(\Rightarrow BC=OB-OC\)
\(\Rightarrow BC=3-1,5=1,5\left(cm\right)\)
\(OC=BC=1,5\left(cm\right)\)
TH1: với \(a>b\)
\(\dfrac{a}{b}-1=\dfrac{a-b}{b}\)
\(\dfrac{a+n}{b+n}-1=\dfrac{a+n-\left(b+n\right)}{b+n}=\dfrac{a-b}{b+n}\)
Mà: \(b+n>b\)
\(\Rightarrow\dfrac{a-b}{b+n}< \dfrac{a-b}{b}\)
\(\Rightarrow\dfrac{a+n}{b+n}-1< \dfrac{a}{b}-1\)
\(\Rightarrow\dfrac{a+n}{b+n}< \dfrac{a}{b}\)
TH2: với \(a< b\)
\(1-\dfrac{a}{b}=\dfrac{b-a}{b}\)
\(1-\dfrac{a+n}{b+n}=\dfrac{\left(b+n\right)-\left(a+n\right)}{b+n}=\dfrac{b-a}{b+n}\)
Mà: \(b+n>b\)
\(\Rightarrow\dfrac{b-a}{b+n}< \dfrac{b-a}{b}\)
\(\Rightarrow1-\dfrac{a+n}{b+n}< 1-\dfrac{a}{b}\)
\(\Rightarrow\dfrac{a+n}{b+n}>\dfrac{a}{b}\)
TH3: \(a=b\)
\(\dfrac{a+n}{b+n}=\dfrac{a+n}{a+n}=1\)
\(\dfrac{a}{b}=\dfrac{a}{a}=1\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{a+n}{b+n}=1\)