Chiếu tia tới mặt phẳng gương và thấy tia phản xạ vuông góc với tia tới .Xác định góc hợp bởi gương và phương nằm ngang.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(27^x=3^{x+2}\)
\(\left(3^3\right)^x=3^{x+2}\)
\(3^{3x}=3^{x+2}\)
\(\Rightarrow3x=x+2\)
\(\Rightarrow3x-x=2\)
\(\Rightarrow2x=2\) \(\Rightarrow x=1\)
Vậy x=1
\(12\frac{3}{11}-\frac{6}{13}+3,25-5\frac{3}{11}-4\frac{7}{13}+\sqrt{1\frac{9}{16}}\)
\(=12+\frac{3}{11}-\frac{6}{13}+3,25-5-\frac{3}{11}-4-\frac{7}{13}+\sqrt{\frac{25}{16}}\)
\(=\left(12-5-4\right)+\left(\frac{3}{11}-\frac{3}{11}\right)+\left(\frac{-6}{13}-\frac{7}{13}\right)+\frac{5}{4}+3,25\)
\(=3+0+\left(-1\right)+1,25+3,25=2+4,5=6,5\)
a) Xét \(\Delta\)AHB và \(\Delta\)DHB có:
^AHB = ^DHB ( 1v )
HA = HD ( giả thiết )
MH chung
=> \(\Delta\)AHB = \(\Delta\)DHB ( c.g.c)
b) Từ (a) => ^ABH = ^DHB => BH là phân giác ^ABD
Vì \(\Delta\)ABC nhọn => H nằm trong đoạn BC
=> BC là phân giác ^ABD
c) NF vuông BC
AH vuông BC
=> NF // AH
=> ^NFM = ^HAM ( So le trong )
Lại có: ^HMA = NMF ( đối đỉnh ) và MA = MF ( giả thiết )
=> \(\Delta\)NFM = \(\Delta\)HAM ( g.c.g)
=> NF = AH ( 2)
Từ ( a) => AH = HD ( 3)
Từ (2) ; (3) => NF = HD
\(\Delta ABC\)có \(\widehat{A}=60^o\)\(\Rightarrow\widehat{B}+\widehat{C}=120^o\)
mà \(\widehat{B}=3.\widehat{C}\)\(\Rightarrow4.\widehat{C}=120^o\)\(\Rightarrow\widehat{C}=30^o\)\(\Rightarrow\widehat{B}=90^o\)
\(\Rightarrow\Delta ABC\)vuông tại B