chứng minh một tam giác trong gương bằng một tam giác
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- "Đánh kẻ chạy đi": Ý nói ta nên trừng trị những kẻ cố tình làm sai, trốn tránh trách nhiệm.
- "Không đánh người chạy lại": Ý nói ta nên có lòng nhân ái, vị tha với những người đã biết nhận ra sai lầm và cố gắng sửa chữa.
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{BAD}\) chung
AD=AE
Do đó: ΔABD=ΔACE
b: Ta có: ΔABD=ΔACE
=>\(\widehat{ABD}=\widehat{ACE}\)
Ta có: \(\widehat{ABD}+\widehat{CBD}=\widehat{ABC}\)
\(\widehat{ACE}+\widehat{ECB}=\widehat{ACB}\)
mà \(\widehat{ABD}=\widehat{ACE}\) và \(\widehat{ABC}=\widehat{ACB}\)
nên \(\widehat{CBD}=\widehat{ECB}\)
=>\(\widehat{IBC}=\widehat{ICB}\)
=>ΔIBC cân tại I
c: ta có: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: IB=IC
=>I nằm trên đường trung trực của BC(2)
ta có: MB=MC
=>M nằm trên đường trung trực của BC(3)
Từ (1),(2),(3) suy ra A,I,M thẳng hàng
a: Ta có: ΔCAB cân tại C
=>\(\widehat{CAB}=\widehat{CBA}\)
mà \(\widehat{CBA}=50^0\)
nên \(\widehat{CAB}=50^0\)
Ta có: ΔCAB cân tại C
=>\(\widehat{ACB}=180^0-2\cdot\widehat{CAB}=80^0\)
Xét ΔCAB có \(\widehat{ACB}>\widehat{CAB}=\widehat{CBA}\)
mà AB,CB,CA lần lượt là cạnh đối diện của các góc ACB,CAB,CBA
nên AB>CB=CA
b: Xét ΔCIA vuông tại I và ΔCIB vuông tại I có
CA=CB
CI chung
Do đó: ΔCIA=ΔCIB
=>IA=IB
c: Ta có: ΔCIA=ΔCIB
=>\(\widehat{ACI}=\widehat{BCI}\)
Xét ΔCHI vuông tại H và ΔCKI vuông tại K có
CI chung
\(\widehat{HCI}=\widehat{KCI}\)
Do đó: ΔCHI=ΔCKI
=>IH=IK
d: Ta có: ΔCHI=ΔCKI
=>CH=CK
=>ΔCHK cân tại C
Bài 2:
a: Xét ΔOAD và ΔOCB có
OA=OB
\(\widehat{AOD}\) chung
OD=OB
Do đó: ΔOAD=ΔOCB
b: Ta có: ΔOAD=ΔOCB
=>\(\widehat{ODA}=\widehat{OBC};\widehat{OAD}=\widehat{OCB}\)
Ta có: \(\widehat{OAD}+\widehat{DAB}=180^0\)(hai góc kề bù)
\(\widehat{OCB}+\widehat{DCB}=180^0\)(hai góc kề bù)
mà \(\widehat{OAD}=\widehat{OCB}\)
nên \(\widehat{DAB}=\widehat{DCB}\)
Ta có: OA+AB=OB
OC+CD=OD
mà OA=OC và OB=OD
nên AB=CD
Xét ΔIAB và ΔICD có
\(\widehat{IAB}=\widehat{ICD}\)
AB=CD
\(\widehat{IBA}=\widehat{IDC}\)
Do đó: ΔIAB=ΔICD
c: Sửa đề: OI là phân giác của góc xOy
Ta có: ΔIAB=ΔICD
=>IB=ID và IA=IC
Xét ΔOIB và ΔOID có
OB=OD
IB=ID
OI chung
Do đó: ΔOIB=ΔOID
=>\(\widehat{BOI}=\widehat{DOI}\)
=>\(\widehat{xOI}=\widehat{yOI}\)
=>OI là phân giác của góc xOy
d: Sửa đề: OI\(\perp\)BD
ta có: OB=OD
=>O nằm trên đường trung trực của BD(1)
ta có: IB=ID
=>I nằm trên đường trung trực của BD(2)
Từ (1),(2) suy ra OI là đường trung trực của BD
=>OI\(\perp\)BD
e: Xét ΔOBD có \(\dfrac{OA}{AB}=\dfrac{OC}{CD}\)
nên AC//BD
Bài 1:
a: ΔABC vuông cân tại A
=>AB=AC và \(\widehat{ABC}=\widehat{ACB}=45^0\)
Ta có: BO là phân giác của góc ABC
=>\(\widehat{ABO}=\widehat{CBO}=\dfrac{\widehat{ABC}}{2}=22,5^0\)
ta có: CO là phân giác của góc ACB
=>\(\widehat{ACO}=\widehat{BCO}=\dfrac{\widehat{ACB}}{2}=22,5^0\)
b: Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\left(=22,5^0\right)\)
nên ΔOBC cân tại O
c: Ta có: ΔOBC cân tại O
=>\(\widehat{BOC}=180^0-2\cdot\widehat{OBC}=180^0-2\cdot22,5^0=135^0\)
d: Xét ΔAMC vuông tại A và ΔANB vuông tại A có
AC=AB
\(\widehat{ACM}=\widehat{ABN}\left(=22,5^0\right)\)
Do đó: ΔAMC=ΔANB
=>MC=BN
Ta có: OM+OC=CM
ON+OB=BN
mà OC=OB và CM=BN
nên OM=ON
Ta có: ΔAMC=ΔANB
=>AM=AN
Xét ΔAMO và ΔANO có
AM=AN
MO=NO
AO chung
Do đó: ΔAMO=ΔANO
=>\(\widehat{AOM}=\widehat{AON}\)
=>OA là phân giác của góc MON
e: Xét ΔABC có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
nên MN//BC
f: ta có: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1),(2) suy ra AO là đường trung trực của BC
=>AO\(\perp\)CB
\(6x=3y=5z\Rightarrow\dfrac{x}{5}=\dfrac{y}{10}=\dfrac{z}{6}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\dfrac{x}{5}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{2x}{10}=\dfrac{3y}{30}=\dfrac{z}{6}=\dfrac{2x+3y+z}{10+30+6}=\dfrac{-92}{46}=-2\)
\(\Rightarrow\left\{{}\begin{matrix}x=-2.5=-10\\y=-2.10=-20\\z=-2.6=-12\end{matrix}\right.\)
6x=5y
=>\(\dfrac{x}{5}=\dfrac{y}{6}\)
mà 2x-y=44
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{2x-y}{2\cdot5-6}=\dfrac{44}{4}=11\)
=>\(x=11\cdot5=55;y=11\cdot6=66\)