K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2022

cho biểu thức A 2√x xx√x−1 −1√x−1 √x 2x √x 1 a rút gọn biểu thứcb tính giá trị của Akhi x 4 2√3.

14 tháng 3 2022

Gọi vận tốc ô tô thứ nhất thứ 2 lần lượt là a ; b ( a > b > 0 )  

Theo bài ra ta có hệ \(\hept{\begin{cases}a-b=10\\\frac{100}{b}-\frac{100}{a}=\frac{1}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b+10\\-\frac{100}{b+10}+\frac{100}{b}=\frac{1}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}a=50\\b=40\end{cases}}\left(tm\right)\)

Vậy vận tốc xe thứ nhất là 50 km/h 

vận tốc xe thứ 2 là 40 km/h 

\(T=\frac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right).\left(y-1\right)}=\frac{x^2.\left(x-1\right)+y^2.\left(y-1\right)}{\left(x-1\right)\left(y-1\right)}=\frac{x^2}{y-1}+\frac{y^2}{x-1}\)

\(T\ge2\sqrt{\frac{x^2}{y-1}.\frac{y^2}{x-1}}=\sqrt{\frac{x^2}{x-1}.\frac{y^2}{y-1}}\)(cô si 2 số nhé)

ta xét :\(\frac{x^2}{x-1}=\left(x+1\right)+\frac{1}{x-1}=\left(x-1\right)+\frac{1}{x-1}+2\ge2\sqrt{\left(x-1\right).\frac{1}{x-1}}+2=4\)

tương tự thì  \(\frac{y^2}{y-1}\ge4\)

\(\Rightarrow T\ge2\sqrt{4.4}=8\)

vậy \(MinT=8\)

\(\frac{a^2+b^2}{ab}+\frac{\sqrt{2ab}}{a+b}=\frac{\left(a+b\right)^2}{ab}+\frac{\sqrt{2ab}}{a+b}-2\)

đặt \(t=\frac{a+b}{\sqrt{ab}}\left(t\ge2\right)\)(do \(a+b\ge2\sqrt{ab}\)

\(A=t^2+\frac{2}{t}-2=\left(\frac{1}{t}+\frac{1}{t}+\frac{t^2}{8}\right)+\frac{7}{8}t^2-2\ge3\sqrt[3]{\frac{1.1.t^2}{t.t.8}}+\frac{7}{8}.2^2-2=3\)

vậy ..................

13 tháng 3 2022

con láo

13 tháng 3 2022

đkxđ: \(\hept{\begin{cases}2x+1\ne0\\y+2\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne-\frac{1}{2}\\y\ne-2\end{cases}}\)

Đặt \(\hept{\begin{cases}\frac{x-1}{2x+1}=a\\\frac{y-2}{y+2}=b\end{cases}}\), hpt đã cho trở thành \(\hept{\begin{cases}a-b=1\\3a-2b=3\end{cases}}\Leftrightarrow\hept{\begin{cases}b=a-1\\3a-2\left(a-1\right)=3\end{cases}}\Leftrightarrow\hept{\begin{cases}b=a-1\\a+2=3\end{cases}}\Leftrightarrow\hept{\begin{cases}b=0\\a=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{x-1}{2x+1}=1\\\frac{y-2}{y+2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-1=2x+1\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=2\end{cases}}\)(nhận)

 Vậy hpt đã cho có nghiệm duy nhất là \(\left(-2;2\right)\)

13 tháng 3 2022

a)Hoành độ giao điểm của (P)và (d) là:

        \(\frac{1}{2}x^2=x+4\)

\(\Leftrightarrow x^2=2x+8\)

\(\Leftrightarrow x^2-2x-8=0\)

\(\Leftrightarrow\left(x+2\right).\left(x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=4\end{cases}}}\)

Thay \(x=-2\)vào (d) ta được:

     \(y=-2+4=2\)

Thay \(x=4\)vào (d)ta được:

    \(y=4+4=8\)

Vậy \(A\left(-2;2\right),B\left(4;8\right)\)hoặc \(A\left(4;8\right),B\left(-2;2\right)\)

b)Mk ko bt làm

13 tháng 3 2022

Hoành độ giao điểm tm pt 

\(x^2-2\left(m+1\right)x+6m-4=0\)

\(\Delta'=\left(m+1\right)^2-\left(6m-4\right)=m^2-4m+5=\left(m-1\right)^2+1>0\)

 

Vậy pt luôn có 2 nghiệm pb 

\(\left(x_1+x_2\right)^2-2x_1x_2=4\left(m+1\right)^2-2\left(3m-2\right)\)

\(=4m^2+8m+4-6m+4=4m^2+2m+8\)

\(=4m^2+\dfrac{2.2m.1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+8=\left(2m+\dfrac{1}{2}\right)^2+\dfrac{31}{4}\ge\dfrac{31}{4}\)

Dấu ''='' xảy ra khi m = -1/4