Cho các số thực x, y, z thõa mãn xyz = 1. Chứng minh rằng:
\(\frac{1}{\left(2+x\right)\left(2+\frac{1}{y}\right)}+\frac{1}{\left(2+y\right)\left(2+\frac{1}{z}\right)}+\frac{1}{\left(2+z\right)\left(2+\frac{1}{x}\right)}\le\frac{1}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình nhầm, phải là \(\le\frac{1}{3}\)mọi người làm giúp mình với mình cần gấp
Theo BĐT Cauchy Schwarz và các biến đổi cơ bản ta dễ có được:
\(\frac{a^2}{\left(2a+b\right)\left(2a+c\right)}=\frac{a^2}{2a\left(a+b+c\right)+2a^2+bc}=\frac{1}{9}\left[\frac{\left(2a+a\right)^2}{2a\left(a+b+c\right)+2a^2+bc}\right]\)
\(\le\frac{1}{9}\left[\frac{4a^2}{2a\left(a+b+c\right)}+\frac{a^2}{2a^2+bc}\right]=\frac{1}{9}\left(\frac{2a}{a+b+c}+\frac{a^2}{2a^2+bc}\right)\)
\(\Rightarrow LHS\le\frac{1}{9}\left(2+\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ca}+\frac{c^2}{2c^2+ab}\right)\)
Tiếp tục theo BĐT Cauchy Schwarz dạng Engel:
\(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ca}+\frac{c^2}{c^2+2ab}\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)
Ta thực hiện phép đổi biến thì:
\(\frac{ab}{ab+2c^2}+\frac{bc}{bc+2a^2}+\frac{ca}{ca+2b^2}\ge1\)
Đến đây là phần của bạn
T/c dg` trug tuyến ứng với cah huyền trog tam giác vuông = \(\frac{1}{2}\)cah huyền
=> BC = 10*2 = 20 cm
gọi x là cạnh góc vuông thứ nhất (x >0)
x - 4 là cạnh góc vuông thứ hai
Xét tam giác ABC vuông tại A, ta có:
\(^{BC^2}\) = AB2 + AC2
202 = x2 + (x+4)2
400 = x2 + x2 + 8x + 16
= 2x2 +8x - 364
\(\Delta\)= b2 = 4*a*c
= 3136 >0
vì \(\Delta\)> 0 nên pt luôn có 2 nghiệm phân biệt
x1=\(\frac{-b-\sqrt{\Delta}}{2a}\)=-16 (loại)
x2 =\(\frac{-b+\sqrt{\Delta}}{2a}\)=12( nhận)
Vậy x = 12 cm
x+4=12+4=16cm
Gọi x : là cạnh góc vuông thứ nhất
Gọi x - 4 : là cạnh góc vuông thứ hai
Gọi y : là cạnh huyền
Gọi z : là đường trung tuyến ứng với cạnh huyền
ĐIỀU KIỆN : x > 4
ta có : y = 2 z = 2 . 10 = 20 cm ( tính chất đường trung tuyến ứng với cạnh huyền )
ta có : y = x2 + (x - 4 ) 2
<=> 20= x2 + x2 - 2x . 4 + 42
<=> 20= 2x2 - 8x + 16
<=> 0 = 2x2 - 8x + 16 - 20
<=> 2x2 - 8x -4 = 0
( a= 2 ; b = -8 ; c = -4 )
\(\Delta=b^2-4ac\)
\(\Delta=\left(-8\right)^2-4.2.\left(-4\right)\)
\(\Delta=64+32\)
\(\Delta=96\) > 0
\(\sqrt{\Delta}=\sqrt{96}=4\sqrt{6}\)
\(x_1=\frac{8+4\sqrt{6}}{2.2}=2+\sqrt{6}cm>0\left(nhan\right)\)
\(x_2=\frac{8-4\sqrt{6}}{2.2}=2-\sqrt{6}< 0\) \(\left(LOAI\right)\)
với x= \(2+\sqrt{6}\)=> cạnh góc vuông thứ nhất là \(2+\sqrt{6}cm\)
voi x= \(2+\sqrt{6}\)=> cạnh góc vuông thứ hai là \(2+\sqrt{6}-4=-2+\sqrt{6}cm\)
DIỆN TÍCH CỦA MIENG ĐẤT HÌNH TAM GIÁC :
x . ( x - 4 )
=\(\left(2+\sqrt{6}\right).\left(-2+\sqrt{6}\right)\)
=\(2\left(cm^2\right)\)
Vay : diện tích của miếng đất hình tam giác là 2 cm2
thay b=0 va pt tren
ta co : 0y2 -2y-5=0
<=> -2y-5=0
<=> -2y = 5
<=> y = \(-\frac{5}{2}\)
vay : y = 0 là \(n_o\) của pt
thay b = 3 vào pt trên
ta có : 3y2 -2y-5=0
( a = 3 ; b = -2 ; c = -5 )
a - b + c = 3 - (-2) + (-5) = 0
Vay : pt có 2 nghiệm pt
\(y_1=-1\)
\(y_2=-\frac{c}{a}=-\frac{-5}{3}=\frac{5}{3}\)
\(\Sigma\dfrac{a^2}{\left(2a+b\right)\left(2a+c\right)}=\Sigma\left(\dfrac{1}{9}.\dfrac{a^2\left(2+1\right)^2}{2a.\left(\Sigma a\right)+2a^2+bc}\right)\le\Sigma\left(\dfrac{1}{9}.\dfrac{4a^2}{2a\left(\Sigma a\right)}+\dfrac{1}{9}.\dfrac{a^2}{2a^2+bc}\right)\)
\(=\Sigma\left(\dfrac{1}{9}.\left(\dfrac{2a}{\Sigma a}+\dfrac{a^2}{2a^2+bc}\right)\right)=\dfrac{1}{9}\left(2+\Sigma\dfrac{a^2}{2a^2+bc}\right)\)
Cần chứng minh \(\Sigma\frac{a^2}{2a^2+bc}\le1\)
<=> \(\Sigma\frac{bc}{2a^2+bc}\ge1\) (*)
Đặt (x;y;z) -------> \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\)
Suy ra (*) <=> \(\Sigma\frac{x^2}{x^2+2xy}\ge1\Leftrightarrow\frac{\Sigma x^2}{\Sigma x^2}\ge1\) (đúng)
Vậy \(\Sigma\frac{a^2}{2a^2+bc}\le1\)
Suy ra \(\Sigma\frac{a^2}{\left(2a+b\right)\left(2a+c\right)}\le\frac{1}{9}\left(2+\Sigma\frac{a^2}{2a^2+bc}\right)\le\frac{1}{9}\left(2+1\right)=\frac{1}{3}\)
Đẳng thức xảy ra <=> x = y = z = 1
Nguồn : Trần Thắng