K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8

aaa + mmm + nnn

= a x 111 + m x 111 + n x 111

= 111 x (a + m + n) 

8 tháng 8

`overline{aaa} + overline{mmm} + overline{nnn} `

`= 111 a + 111m + 111n`

`= 111(a+m+n)`

8 tháng 8

Mỗi loại có số viên là: 

`100 : 4 = 25` (viên) 

Phải lấy ra ít nhất số viên bi để chắc chắn có đủ 3 màu là: 

`25 xx 3 = 75` (viên)

Đáp số: `75` viên

NV
8 tháng 8

51 viên là đủ rồi em

8 tháng 8

a) Đủ 3 màu.

Ta có:

20 viên vàng

18 viên xanh

26 viên đỏ

Ở đây ta phải chọn ra 2 loại có số lượng bi nhiều nhất để tránh bị trùng, đó là đỏ và vàng. Ngoài ra, cần có đủ cả 3 loại nên ta thêm 1 viên xanh nữa. Vậy ta cần lấy ra:

26 + 20 + 1 = 47 (viên)

b) Có ít nhất 8 viên màu xanh

Để chắc chắn 1 trường hợp xui xẻo nhất chỉ lấy được số bi đỏ và vàng, sau đó mới thêm 8 viên màu xanh, đây cũng là trường hợp cho ta kết quả chắc chắn nhất. Do đó, ta có số bi cần lấy ra là:

20 + 26 + 8 = 54 (viên)

c) Có ít nhất 9 viên đỏ và 10 viên vàng

Để có ít nhất số bi như trên, ta cũng cần cộng tổng 2 loại bi có số lượng nhiều nhất, là vàng và đỏ là 46. Ta có: 46 - 18 = 28 (viên)

Ta thấy số bi đỏ nhiều hơn số bi vàng nên ta xét: 28 - 26 = 2 (viên)

Do thử trường hợp chỉ lấy được 2 viên bi đỏ nếu chỉ lấy ra 46 viên bi, nên để chắc chắn có đủ 9 viên bi đỏ, ta cần thêm 7 viên bi nữa. Vậy cần lấy ra tất cả: 46 + 7 = 53 (viên)

d) Có ít nhất 13 viên vàng, 10 viên xanh và 9 viên đỏ

- Xét trường hợp chỉ lấy ra được bi càng và bi đỏ, tổng của chúng là 46. Nếu lúc đó, ta lấy được chỉ 2 viên bi vàng, còn những loại còn lại đều đầy đủ, thì ta cần thêm 11 viên bi, do đó ta cần lấy ra:

46 + 11 = 57 (viên)

Đáp số:...

NV
8 tháng 8

\(\Leftrightarrow\left(6x^2+2xy-8x\right)+\left(3xy+y^2-4y\right)+\left(3x+y-4\right)=1\)

\(\Leftrightarrow2x\left(3x+y-4\right)+y\left(3x+y-4\right)+\left(3x+y-4\right)=1\)

\(\Leftrightarrow\left(3x+y-4\right)\left(2x+y+1\right)=1\)

Ta có bảng sau:

3x+y-4-11
2x+y+1-11
x55
y-12-10

Vậy \(\left(x;y\right)=\left(5;-12\right);\left(5;-10\right)\)

8 tháng 8

176.92

8 tháng 8

176.92

\(C=\dfrac{5}{2\cdot7}+\dfrac{16}{7\cdot9}-\dfrac{2}{9\cdot11}-\dfrac{29}{1\cdot11}\)

\(=\dfrac{1}{2}-\dfrac{1}{7}+\dfrac{1}{7}+\dfrac{1}{9}-\dfrac{1}{9}+\dfrac{1}{11}-\dfrac{29}{11}\)

\(=\dfrac{1}{2}-\dfrac{28}{11}=\dfrac{11-56}{22}=\dfrac{-45}{22}< \dfrac{1}{3}\)

 

8 tháng 8

 A = (148)2020 + 10 

A =  (148)5.404 + 10

A = (145)8.404 + 10

A = 5378243232 + 10

537824 \(\equiv\) 1 (mod 11)

5378243232 \(\equiv\) 13232 (mod 11) \(\equiv\) 1 (mod 11)

10 \(\equiv\) 10 (mod 11)

⇒ 5378243232 + 10  \(\equiv\) 1 + 10 (mod 11)

⇒5378243232 + 10 \(\equiv\) 11 (mod 11) \(\equiv\) 0 (mod 11)

⇒ A = (148)2020 + 10 \(⋮\) 11 (đpcm)

 

 

 

  

 

NV
8 tháng 8

\(14\equiv3\left(mod11\right)\Rightarrow\left(14^8\right)^{2020}\equiv\left(3^8\right)^{2020}\left(mod11\right)\)

\(\left(3^8\right)^{2020}=3^{8.404.5}=\left(3^5\right)^{3232}=\left(243\right)^{3232}\)

\(243\equiv1\left(mod11\right)\Rightarrow243^{3232}\equiv1\left(mod11\right)\)

\(\Rightarrow\left(14^8\right)^{2020}\equiv1\left(mod11\right)\)

\(\Rightarrow\left(14^8\right)^{2020}+10⋮11\)

NV
6 tháng 8

Đặt \(P=-x^2+4xy-5y^2-2x+4y-5\)

\(=-\left(x^2-4xy+4y^2\right)-2\left(x-2y\right)-1-y^2-4\)

\(=-\left(x-2y\right)^2-2\left(x-2y\right)-1-y^2-4\)

\(=-\left[\left(x-2y\right)^2+2\left(x-2y\right)+1\right]-y^2-4\)

\(=-\left(x-2y+1\right)^2-y^2-4\)

Do \(\left\{{}\begin{matrix}-\left(x-2y+1\right)^2\le0\\-y^2\le0\\-4< 0\end{matrix}\right.\) ; \(\forall x;y\)

\(\Rightarrow-\left(x-2y+1\right)^2-y^2-4< 0;\forall x;y\)

Vậy P luôn âm

6 tháng 8

Số đối của \(\dfrac{2}{3}\) là: 0 - \(\dfrac{2}{3}\) = - \(\dfrac{2}{3}\)

Số đối của - \(\dfrac{5}{6}\) là: 0 - (- \(\dfrac{5}{6}\)) = \(\dfrac{5}{6}\)

Số đối của 0 là 0 - 0 = 0

Số đối của -3 là 0 - (-3) = 3 

Số đối của 14 là 0 - 14 = - 14

F={1;3;6;...;4950}

=>\(F=\left\{\dfrac{1\cdot2}{2};\dfrac{2\cdot3}{2};\dfrac{3\cdot4}{2};...;\dfrac{99\cdot100}{2}\right\}\)

=>F có 99 phần tử

6 tháng 8

Ta có: 

`1 + 2 = 3 (`Số thứ `2)`

`1+2+3 = 6 (`Số thứ `3)`

`1+2+3+4 = 10 (Số thứ `4) `

....

`1+2+3+4+...+x = 4950` (Số thứ `x)`

`=> x/2 . (x+1) = 4950`

`=> x(x+1) = 9900`

Mà `9900 = 99 . 100`

`=> x = 99`

Vậy tập hợp F có 99 phần tử