𝓜𝓝𝓖 𝓸̛𝓲!! 𝓰𝓲𝓾́𝓹 𝓶𝓲𝓴 𝓿𝓸̛́𝓲 𝓪̣
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) Mình làm rồi nhé !
1)
\(a.3,265\times100=326,5\\ b.5,4\times1000=540\\ c.0,386\times10=3,86\\ d.0,02\times1000=20\\ e.75,2:10=7,52\\ f.8127:100=81,27\\ g.5,24:100=0,0524\\ h.74,8:1000=0,0748\\ i.52:100=0,52\\ k.0,7:1000=0,0007\\ l.0,08\times1000=80\\ m.3,14\times10=31,4\)
Ta có:
+) Vì \(\overline{2abb}⋮\) \(2\) và \(5\)nên:
\(b=0\)
+) Vì \(\overline{2abb}⋮3\) nên:
\(2+a+b+b=2+a+0+0=a+2⋮3\)
\(\Rightarrow\left(a+2\right)\in\left\{3,6,9\right\}\) (vì \(1\le a\le9\))
\(\Rightarrow a\in\left\{1,4,7\right\}\)
Vậy...
Bài 14:
1: \(A=x^2-x+3\)
\(=x^2-x+\dfrac{1}{4}+\dfrac{11}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}>=\dfrac{11}{4}\forall x\)
Dấu '=' xảy ra khi x-1/2=0
=>\(x=\dfrac{1}{2}\)
2: \(B=x^2+x+1\)
\(=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x+\dfrac{1}{2}=0\)
=>\(x=-\dfrac{1}{2}\)
3: \(C=x^2-4x+1\)
\(=x^2-4x+4-3\)
\(=\left(x-2\right)^2-3>=-3\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
4: \(D=x^2-5x+7\)
\(=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x-\dfrac{5}{2}=0\)
=>\(x=\dfrac{5}{2}\)
5: \(E=x^2+2x+2\)
\(=x^2+2x+1+1=\left(x+1\right)^2+1>=1\forall x\)
Dấu '=' xảy ra khi x+1=0
=>x=-1
6: \(F=x^2-3x+1\)
\(=x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{5}{4}\)
\(=\left(x-\dfrac{3}{2}\right)^2-\dfrac{5}{4}>=-\dfrac{5}{4}\forall x\)
Dấu '=' xảy ra khi \(x-\dfrac{3}{2}=0\)
=>\(x=\dfrac{3}{2}\)
7: \(G=x^2+3x+3\)
\(=x^2+2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{3}{4}\)
\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi x+3/2=0
=>x=-3/2
8: \(H=3x^2+3-5x\)
\(=3\left(x^2-\dfrac{5}{3}x+1\right)\)
\(=3\left(x^2-2\cdot x\cdot\dfrac{5}{6}+\dfrac{25}{36}+\dfrac{11}{36}\right)\)
\(=3\left(x-\dfrac{5}{6}\right)^2+\dfrac{11}{12}>=\dfrac{11}{12}\forall x\)
Dấu '=' xảy ra khi x-5/6=0
=>x=5/6
9: \(I=4x+2x^2+3\)
\(=2\left(x^2+2x+\dfrac{3}{2}\right)\)
\(=2\left(x^2+2x+1+\dfrac{1}{2}\right)\)
\(=2\left(x+1\right)^2+1>=1\forall x\)
Dấu '=' xảy ra khi x+1=0
=>x=-1
10: \(K=4x^2+3x+2\)
\(=\left(2x\right)^2+2\cdot2x\cdot\dfrac{3}{4}+\dfrac{9}{16}+\dfrac{23}{16}\)
\(=\left(2x+\dfrac{3}{4}\right)^2+\dfrac{23}{16}>=\dfrac{23}{16}\forall x\)
Dấu '=' xảy ra khi 2x+3/4=0
=>x=-3/8
11: M=(x-1)(x-3)+11
\(=x^2-4x+3+11=x^2-4x+14\)
\(=x^2-4x+4+10=\left(x-2\right)^2+10>=10\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
12: \(N=\left(x-3\right)^2+\left(x-2\right)^2\)
\(=x^2-6x+9+x^2-4x+4\)
\(=2x^2-10x+13\)
\(=2\left(x^2-5x+\dfrac{13}{2}\right)=2\left(x^2-5x+\dfrac{25}{4}+\dfrac{1}{4}\right)\)
\(=2\left(x-\dfrac{5}{2}\right)^2+\dfrac{1}{2}>=\dfrac{1}{2}\forall x\)
Dấu '=' xảy ra khi x-5/2=0
=>x=5/2
a: Xét ΔBAE và ΔBDE có
BA=BD
\(\widehat{ABE}=\widehat{DBE}\)
BE chung
Do đó: ΔBAE=ΔBDE
b: ΔBAE=ΔBDE
=>\(\widehat{BAE}=\widehat{BDE}\)
=>\(\widehat{BDE}=90^0\)
=>DE\(\perp\)BC tại D
XétΔBHF vuông tại H và ΔBHC vuông tại H có
BH chung
\(\widehat{HBF}=\widehat{HBC}\)
Do đó ΔBHF=ΔBHC
c: Xét ΔBFC có
BH,CA là các đường cao
BH cắt CA tại E
Do đó: E là trực tâm của ΔBFC
=>FE\(\perp\)BC
mà DE\(\perp\)BC
và FE,DE có điểm chung là E
nên F,E,D thẳng hàng
\(d.\dfrac{59-x}{41}+\dfrac{57-x}{43}=\dfrac{41-x}{59}+\dfrac{43-x}{57}\\ \left(\dfrac{59-x}{41}+1\right)+\left(\dfrac{57-x}{43}+1\right)=\left(\dfrac{41-x}{59}+1\right)+\left(\dfrac{43-x}{57}+1\right)\\ \dfrac{100-x}{41}+\dfrac{100-x}{43}=\dfrac{100-x}{59}+\dfrac{100-x}{57}\\ \left(100-x\right)\left(\dfrac{1}{41}+\dfrac{1}{43}-\dfrac{1}{59}-\dfrac{1}{57}\right)=0\\ 100-x=0\\ x=100\)
\(a.6,17\times0,01=0,0617\\ b.2,038:0,1=20,38\\ c.546\times0,001=0,546\\ d.0,72:0,001=720\\ e.4,126:0,01=412,6\\ f.578\times0,01=5,78\\ g.9,18:0,1=91,8\\ h.0,76\times0,1=0,076\\ i.4,376:0,001=4376\\ k.82,3\times0,001=0,0823\\ l.7,8\times0,1=0,78\\ m.13:0,1=130\)
bài 4:
\(C=\left(1+\dfrac{1}{1\cdot3}\right)\left(1+\dfrac{1}{2\cdot4}\right)\cdot...\cdot\left(1+\dfrac{1}{98\cdot100}\right)\)
\(=\left(1+\dfrac{1}{2^2-1}\right)\left(1+\dfrac{1}{3^2-1}\right)\cdot...\cdot\left(1+\dfrac{1}{99^2-1}\right)\)
\(=\dfrac{2^2}{2^2-1}\cdot\dfrac{3^2}{3^2-1}\cdot...\cdot\dfrac{99^2}{99^2-1}\)
\(=\dfrac{2\cdot3\cdot...\cdot99}{1\cdot2\cdot3\cdot...\cdot98}\cdot\dfrac{2\cdot3\cdot...\cdot99}{3\cdot4\cdot...\cdot100}=\dfrac{99}{1}\cdot\dfrac{2}{100}=\dfrac{99}{50}\)
Bài 5:
\(B=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{205}}{\dfrac{204}{1}+\dfrac{203}{2}+...+\dfrac{1}{204}}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{205}}{\left(1+\dfrac{203}{2}\right)+\left(1+\dfrac{202}{3}\right)+...+\left(\dfrac{1}{204}+1\right)+1}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{205}}{\dfrac{205}{2}+\dfrac{205}{3}+...+\dfrac{205}{205}}=\dfrac{1}{205}\)
a) 8 cm = 0,08 m
b) 0,52 m = 5,2 dm
c) 0,6 l = 600 ml
d) 84 g = 0,084 kg
e) 4 m2 = 0,0004 ha
f) 0,178 ha = 1780 m2
g) 5,8 dam2 = 580 m2
h) 956 cm2 = 9,56 dm2
Nhận thấy \(x_0=0\) không phải là nghiệm của phương trình đã cho.
Giả sử \(x_0< 0\), ta có \(x_0^3-x_0-1=0\)
\(\Leftrightarrow x_0\left(x_0^2-1\right)=1\)
\(\Leftrightarrow x_0\left(x_0-1\right)\left(x_0+1\right)=1\) (*)
Nếu \(x_0\le-1\) thì VT (*) \(\le0< 1=VP\), do đó (*) vô lý.
Xét \(-1< x_0< 0\) thì \(-1< x_0^3< 0\) và \(0< -x_0< 1\)
Do đó \(VT=x_0^3-x_0< 0+1=1=VP\) nên (*) vô lý.
Vậy điều giả sử ban đầu là sai \(\Rightarrow x_0>0\)
Đặt f(x)=x3-x-1
Vì \(f\left(x\right)=x^3-x-1\)
nên hàm số liên tục trên R
\(f\left(1\right)=1^3-1-1=-1;f\left(2\right)=2^3-2-1=5\)
Vì \(f\left(1\right)\cdot f\left(2\right)< 0\)
nên hàm số f(x)=x3-x-1 có nghiệm trên khoảng (1;2)
=>\(x_0\in\left(1;2\right)\)
=>\(x_0>0\)
Khi chuyển dấu phẩy của một số thập phân sang bên phải 1 hàng thì ta được số mới bằng 10 lần số cũ
Do đó, tổng của số mới và số phải tìm bằng:
\(10+1=11\) (lần số phải tìm)
Số phải tìm là:
\(28,908:11=2,628\)
Đáp số: 2,628
Khi chuyển dấu phẩy sang phải một hàng thì ta được số mới bằng 10 lần số cũ
11 lần số cũ là 10 số cũ+số cũ=số mới+số cũ=28,908
Số cũ là 28,908:11=2,628