cho tam giác ABC có AB = AC. Gọi I là trung điểm của BC. a) chứng minh tam giác AIB = tam giác AIC b) Kẻ đường thẳng qua I và vuông góc với AB tại D. Trên tia đối của tia ID lấy điểm E sao cho ID = IE. Chứng minh AB // CE c) Kẻ EK vuông góc với BC tại K, cắt cạnh AC tại H. Chứng minh HD // AI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(n>3\), khi đó \(n⋮̸3\), dẫn đến \(n^{2024}\) chia 3 dư 1 (số chính phương khi chia cho 3 chỉ có thể dư 0 hoặc 1 nhưng do n không chia hết cho 3 nên chỉ có thể suy ra \(n^{2024}\) chia 3 dư 1)
Suy ra \(n^{2024}+1\) chia 3 dư 2. Do đó nó không thể là số chính phương.
Xét \(n=2\), khi đó \(2^{2024}+1=\left(2^{1012}\right)^2+1>\left(2^{1012}\right)^2\)
Đồng thời \(\left(2^{1012}\right)^2+1< \left(2^{1012}\right)^2+2.2^{1012}+1=\left(2^{1012}+1\right)^2\)
Do đó \(\left(2^{1012}\right)^2< 2^{2024}+1< \left(2^{1012}+1\right)^2\), hay \(2^{2024}+1\) không thể là số chính phương.
Xét \(n=3\), khi đó \(3^{2024}+1=\left(3^{1012}\right)^2+1>\left(3^{1012}\right)^2\)
Và \(\left(3^{1012}\right)^2+1< \left(3^{1012}\right)^2+2.3^{1012}+1=\left(3^{1012}+1\right)^2\)
Do đó \(\left(3^{1012}\right)^2< 3^{2024}+1< \left(3^{1012}+1\right)^2\), hay \(3^{2024}+1\) không thể là số chính phương.
Vậy, với mọi số nguyên tố \(n\) thì \(n^{2024}+1\) không thể là số chính phương.
Tổng 2 vận tốc: 45+60=105(km/h)
Từ khi xuất phát tới khi gặp nhau mất: 40:105= 8/21(h)
Em xem lại đề, số quá xấu
\(\dfrac{3}{4}+\dfrac{1}{4}:x=\dfrac{2}{5}\\ \dfrac{1}{4}:x=\dfrac{2}{5}-\dfrac{3}{4}\\ \dfrac{1}{4}:x=\dfrac{2\times4-3\times5}{20}=\dfrac{-7}{20}\\ x=\dfrac{1}{4}:\left(-\dfrac{7}{20}\right)=-\dfrac{5}{7}\)
3/4 + 1/4 : x =2/5
=4/4 : x =2/5
=1 : x =0.4
x=1 : 0.4
x=2.5
Ta có
\(a^2+b^2+c^2+d^2+a+b+c+d=\)
\(=a\left(a+1\right)+b\left(b+1\right)+c\left(c+1\right)+d\left(d+1\right)\)
Ta thấy
\(a\left(a+1\right);b\left(b+1\right);c\left(c+1\right);d\left(d+1\right)\) là tích của 2 số tự nhiên liên tiếp nên các tích trên đều chia hết cho 2
\(\Rightarrow a\left(a+1\right)+b\left(b+1\right)+c\left(c+1\right)+d\left(d+1\right)⋮2\)
\(\Rightarrow\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)⋮2\)
Ta có
\(a^2+c^2=b^2+d^2\Rightarrow\left(a^2+b^2+c^2+d^2\right)=2\left(b^2+d^2\right)⋮2\)
\(\Rightarrow a^2+b^2+c^2+d^2⋮2\)
\(\Rightarrow a+b+c+d⋮2\)
=> a+b+c+d là hợp số
\(x\) = 0 - \(x\)
\(x\) + \(x\) = 0
2\(x\) = 0
\(x\) = 0
\(3x=2y=5z\)
\(\Rightarrow\dfrac{3x}{30}=\dfrac{2y}{30}=\dfrac{5z}{30}\)
\(\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{6}=\dfrac{x+y+z}{10+15+6}=\dfrac{-62}{31}=-2\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{10}=-2\\\dfrac{y}{15}=-2\\\dfrac{z}{6}=-2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-2\cdot10=-20\\y=-2\cdot15=-30\\y=-2\cdot6=-12\end{matrix}\right.\)
Ta có: \(3x=2y=5z\)
\(\Rightarrow\dfrac{x}{\dfrac{1}{3}}=\dfrac{y}{\dfrac{1}{2}}=\dfrac{z}{\dfrac{1}{5}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau và \(x+y+z=-62\), ta được:
\(\dfrac{x}{\dfrac{1}{3}}=\dfrac{y}{\dfrac{1}{2}}=\dfrac{z}{\dfrac{1}{5}}=\dfrac{x+y+z}{\dfrac{1}{3}+\dfrac{1}{2}+\dfrac{1}{5}}=\dfrac{-62}{\dfrac{31}{30}}=-60\)
\(\Rightarrow\left\{{}\begin{matrix}x=-60\cdot\dfrac{1}{3}=-20\\y=-60\cdot\dfrac{1}{2}=-30\\z=-60\cdot\dfrac{1}{5}=-12\end{matrix}\right.\)
Vậy \(x=-20;y=-30;z=-12\).
c, |2\(x\) + 1| + |3\(x\) - 1| = 0
vì |2\(x\) + 1| ≥ 0; |3\(x\) - 1| = 0
⇒ |2\(x\) + 1| + |3\(x\) - 1| = 0
⇔ \(\left\{{}\begin{matrix}2x+1=0\\3x-1=0\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}2x=-1\\3x=1\end{matrix}\right.\)
\(\Rightarrow\) \(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
\(-\dfrac{1}{2}\) < \(\dfrac{1}{3}\)
Vậy \(x\) \(\in\) \(\varnothing\)
a, Nếu 4.|3\(x\) - 1| = |6\(x\) - 2| + |-1,5|
4.|3\(x\) -1| - 2.|3\(x\) - 1| = 1,5
Nếu 3\(x\) - 1 ≥ 0 ⇒ \(x\) ≥ \(\dfrac{1}{3}\)
Ta có: 4.(3\(x\) - 1) - 2.(3\(x\) - 1) = 1,5
12\(x\) - 4 - 6\(x\) + 2 = 1,5
6\(x\) - 2 = 1,5
6\(x\) = 1,5 + 2
6\(x\) = 3,5
\(x\) = 3,5: 6
\(x\) = \(\dfrac{7}{12}\)
Nếu 3\(x\) - 1 < 0 ⇒ \(x\) < \(\dfrac{1}{3}\)
Ta có: - 4.(3\(x\) - 1) = - (6\(x\) - 2) + 1,5
-12\(x\) + 4 + 6\(x\) - 2 = 1,5
-6\(x\) + 2 = 1,5
6\(x\) = 2- 1,5
6\(x\) = 0,5
\(x\) = 0,5 : 6
\(x\) = \(\dfrac{1}{12}\)
Vậy \(x\) \(\in\) {\(\dfrac{1}{12}\); \(\dfrac{7}{12}\)}