Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, \(\sqrt{0,04}\) = \(\sqrt{\left(0,2\right)^2}\) = 0,2
2, \(\sqrt{0,09}\) = \(\sqrt{\left(0,3\right)^2}\) = 0,3
3, \(\sqrt{0,25}\) = \(\sqrt{\left(0,5\right)^2}\) = 0,5
4, \(\sqrt{0,36}\) = \(\sqrt{\left(0,6\right)^2}\) = 0,6
\(x^2\) - 6\(x^3\) - 9\(x\) - 3; (1)
thay \(x\) = - \(\dfrac{2}{3}\) vào (1)
ta có: (- \(\dfrac{2}{3}\))2 - 6.(-\(\dfrac{2}{3}\))3 - 9.(-\(\dfrac{2}{3}\)) - 3
= \(\dfrac{4}{9}\) + \(\dfrac{16}{9}\) + 6 - 3
= \(\dfrac{20}{9}\) + 3
= \(\dfrac{47}{9}\)
Không có giá trị $C$ cụ thể bạn nhé. Bạn xem lại đề xem đã viết đúng chưa vậy?
Bài 1:
a. $(3x-1)^{10}=(3x-1)^{20}$
$(3x-1)^{20}-(3x-1)^{10}=0$
$(3x-1)^{10}[(3x-1)^{10}-1]=0$
$\Rightarrow (3x-1)^{10}=0$ hoặc $(3x-1)^{10}=1$
Nếu $(3x-1)^{10}=0$
$\Rightarrow 3x-1=0$
$\Rightarrow x=\frac{1}{3}$
Nếu $(3x-1)^{10}-1=0$
$\Rightarrow 3x-1=1$ hoặc $3x-1=-1$
$\Rightarrow x=\frac{2}{3}$ hoặc $x=0$
b
$x(6-x)^{2003}=(6-x)^{2003}$
$x(6-x)^{2003}-(6-x)^{2003}=0$
$(6-x)^{2003}(x-1)=0$
$\Rightarrow (6-x)^{2003}=0$ hoặc $x-1=0$
$\Rightarrow x=6$ hoặc $x=1$
c.
$5^x+5^{x+2}=650$
$5^x(1+5^2)=650$
$5^x.26=650$
$5^x=25=5^2$
$\Rightarrow x=2$
Bài 2:
a. Trùng với câu c bài 1
b.
$3^2.3^n=3^5$
$3^{n+2}=3^5$
$\Rightarrow n+2=5$
$\Rightarrow n=3$
c.
$(2^2:4).2^n=4$
$1.2^n=4=2^2$
$2^n=2^2$
$\Rightarrow n=2$
Lời giải:
$3A=1.2(3-0)+2.3(4-1)+3.4(5-2)+....+2020.2021(2022-2019)$
$=(1.2.3+2.3.4+3.4.5+....+2020.2021.2022)-(0.1.2+1.2.3+2.3.4+....+2019.2020.2021)$
$=2020.2021.2022$
$\Rightarrow A=\frac{2020.2021.2022}{3}$
Bạn nên tách lẻ từng bài từng post ra để khả năng nhận được sự trợ giúp cao hơn nhé. Đăng quá nhiều bài trong 1 post (nhất là bài hình) khiến mọi người nản, dễ bỏ qua bài của bạn hơn.
Gọi các phân số cần tìm là: \(\dfrac{a}{b}\) theo bài ra ta có:
\(\dfrac{a}{b}\) = \(\dfrac{a+2}{b\times2}\)
a.(b x 2) = (a + 2) x b
ab x 2 = ab + 2b
ab = 2b
a = 2
Ta có: \(\dfrac{2}{b}\) > \(\dfrac{1}{5}\) = \(\dfrac{2}{10}\)
⇒ b < 10 ⇒ b = 1; 2; 3; 4; 5; 6; 7; 8; 9
Vì \(\dfrac{2}{b}\) không phải là số tự nhiên nên b \(\in\) {3; 4; 5; 6; 7; 8; 9}
Bài 16:
\(\dfrac{1}{6}\) < \(\dfrac{1}{5^2}\) + \(\dfrac{1}{6^2}\) + \(\dfrac{1}{7^2}\) +...+ \(\dfrac{1}{100^2}\) < \(\dfrac{1}{4}\)
\(\dfrac{1}{5^2}\) < \(\dfrac{1}{4.5}\) = \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\)
\(\dfrac{1}{6^2}\) < \(\dfrac{1}{5.6}\) = \(\dfrac{1}{5}\) - \(\dfrac{1}{6}\)
............................
\(\dfrac{1}{100^2}\) < \(\dfrac{1}{99.100}\) = \(\dfrac{1}{99}\) - \(\dfrac{1}{100}\)
Cộng vế với vế ta có:
\(\dfrac{1}{5^2}\) + \(\dfrac{1}{6^2}\)+...+ \(\dfrac{1}{100^2}\) < \(\dfrac{1}{4}\) - \(\dfrac{1}{100}\) < \(\dfrac{1}{4}\) (1)
\(\dfrac{1}{5^2}\) > \(\dfrac{1}{5.6}\) = \(\dfrac{1}{5}\) - \(\dfrac{1}{6}\)
\(\dfrac{1}{6^2}\) > \(\dfrac{1}{6.7}\) = \(\dfrac{1}{6}\) - \(\dfrac{1}{7}\)
...............................
\(\dfrac{1}{100^2}\) > \(\dfrac{1}{100.101}\) = \(\dfrac{1}{100}\) - \(\dfrac{1}{101}\)
Cộng vế với vế ta có:
\(\dfrac{1}{5^2}\) + \(\dfrac{1}{6^2}\) + ... + \(\dfrac{1}{100^2}\) > \(\dfrac{1}{5}\) - \(\dfrac{1}{101}\)= \(\dfrac{96}{505}\) > \(\dfrac{96}{576}\) = \(\dfrac{1}{6}\) (2)
Kết hợp (1) và (2) ta có:
\(\dfrac{1}{6}\) < \(\dfrac{1}{5^2}\) + \(\dfrac{1}{6^2}\) +...+ \(\dfrac{1}{100^2}\) < \(\dfrac{1}{4}\) (đpcm)
Bạn cần hỗ trợ bài nào thì nên ghi chú rõ bài đó ra nhé. Nếu cần nhiều bài thì nên tách lẻ từng bài từng post để mọi người hỗ trợ nhanh hơn nhé.