K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 12 2023

a. 

\(=(\frac{-5}{12}+\frac{17}{12})+(\frac{4}{37}+\frac{-41}{37})=\frac{12}{12}+\frac{-37}{37}=1+(-1)=0\)

b.

\(=\frac{-20}{24}+\frac{9}{24}-\frac{1}{10}=\frac{-11}{24}+\frac{1}{10}=\frac{-43}{120}\)

c.

\(=\frac{-25}{27}-\frac{31}{42}+\frac{7}{27}+\frac{3}{42}\\ =\frac{-25}{27}+\frac{7}{27}+(\frac{-31}{42}+\frac{3}{42})\\ =\frac{-2}{3}+\frac{-2}{3}=\frac{-4}{3}\)

AH
Akai Haruma
Giáo viên
18 tháng 12 2023

d.

\(=\frac{5}{36}+\frac{-28}{36}-\frac{5}{4}=\frac{5}{36}+\frac{-28}{36}-\frac{45}{36}\\ =\frac{-68}{36}=\frac{-17}{9}\)

e. 

\(=\frac{3}{5}+\frac{2}{5}: 2=\frac{3}{5}+\frac{1}{5}=\frac{4}{5}\)

f.

\(=\frac{3}{10}(\frac{-23}{7}+\frac{13}{7})=\frac{3}{10}.\frac{-10}{7}=\frac{-3}{7}\)

g.

\(=\frac{3}{2}+\frac{1}{4}+(-1)=\frac{7}{4}-1=\frac{3}{4}\)

h.

\(=\frac{2^{2023}}{(2^2)^{1011}}=\frac{2^{2023}}{2^{2022}}=2^{2023-2022}=2\)

i.

\(=4-4+(-8).\frac{5}{4}=0+(-10)=-10\)

18 tháng 12 2023

Không gửi linh tinh ạ.

18 tháng 12 2023

Để A có giá trị là một số nguyên thì:

\(\left(\sqrt{x}+1\right)⋮\left(\sqrt{x}-3\right)\)

\(\Leftrightarrow\left(\sqrt{x}-3\right)+4⋮\left(\sqrt{x}-3\right)\)

\(\Leftrightarrow4⋮\left(\sqrt{x}-3\right)\)

Vì \(x\in Z\) nên \(\left(\sqrt{x}-3\right)\inƯ\left(4\right)=\left\{\pm1,\pm2,\pm4\right\}\)

Ta có bảng sau:

\(\sqrt{x}-3\) 1 -1 2 -2 4 -4
\(\sqrt{x}\) 4 2 5 1 7 -1
x 16 4 25 1 49 (loại)

Vậy ....

 

18 tháng 12 2023

Ta có: \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{\left(\sqrt{x}-3\right)+4}{\sqrt{x}-3}=\dfrac{\sqrt{x}-3}{\sqrt{x}-3}=\dfrac{4}{\sqrt{x}-3}=1+\dfrac{4}{\sqrt{x}-3}\)

Để A có giá trị là một số nguyên khi:

\(4⋮\sqrt{x}-3\) hay \(\sqrt{x}-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

Do đó:

\(\sqrt{x}-3=-1\Rightarrow\sqrt{x}=-1+3=2\Rightarrow x=4\)

\(\sqrt{x}-3=1\Rightarrow\sqrt{x}=1+3=4\Rightarrow x=16\)

\(\sqrt{x}-3=-2\Rightarrow\sqrt{x}=-2+3=1\Rightarrow x=1\)

\(\sqrt{x}-3=2\Rightarrow\sqrt{x}=2+3=5\Rightarrow x=25\)

\(\sqrt{x}-3=-4\Rightarrow\sqrt{x}=-4+3=-1\)  ( loại )

\(\sqrt{x}-3=4\Rightarrow\sqrt{x}=4+3=7\Rightarrow x=49\)

Vậy để A là một số nguyên khi \(x\in\left\{4;16;1;25;49\right\}\)

AH
Akai Haruma
Giáo viên
2 tháng 1 2024

Lời giải:
$\frac{55-x}{1963}+\frac{50-x}{1968}+\frac{45-x}{1973}+\frac{40-x}{1978}+4=0$

$\frac{55-x}{1963}+1+\frac{50-x}{1968}+1+\frac{45-x}{1973}+1+\frac{40-x}{1978}+1=0$

$\frac{2018-x}{1963}+\frac{2018-x}{1968}+\frac{2018-x}{1973}+\frac{2018-x}{1978}=0$

$(2018-x)(\frac{1}{1963}+\frac{1}{1968}+\frac{1}{1973}+\frac{1}{1978})=0$

$\Rightarrow 2018-x=0$

$\Rightarrow x=2018$.

18 tháng 12 2023

\(\dfrac{1}{3}.\sqrt{\dfrac{9}{25}}\) - (\(\dfrac{1}{3}\) + \(\dfrac{1}{2}\))2

\(\dfrac{1}{3}\).\(\dfrac{3}{5}\) - (\(\dfrac{5}{6}\))2

\(\dfrac{1}{5}\) - \(\dfrac{25}{36}\)

= - \(\dfrac{89}{180}\)

18 tháng 12 2023

=1