Cho hình vuông ABCD và 1 điểm E bất kỳ nằm giữa A và B, trên tia đối của tia CB lấy 1 điểm F sao cho CF = AE:
a, Tính góc EDF
b, Gọi G là điểm đối xứng với D qua trung điểm I của EF, tứ giác DEGF là hình gì?
c, CMR: AC, DG, EF đồng quy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số bé là : x . ĐK : x thuộc tập hợp số thực
Suy ra : số lớn là : x+12
Do đó :
Chia số bé cho 7 ta được thương là : \(\dfrac{x}{7}\)
Chia số lớn cho 5 ta được thương là : \(\dfrac{x+12}{5}\)
Do khi chia số lớn cho 5 , số bé cho 7 ta được thương lớn hơn thương bé là 4 đơn vị . Nên ta có phương trình :
\(\dfrac{x+12}{5}-\dfrac{x}{7}=4\)
\(\Leftrightarrow\dfrac{7x+84}{35}-\dfrac{5x}{35}=\dfrac{140}{35}\)
\(\Rightarrow7x+84-5x=140\)
\(\Leftrightarrow2x=56\)
\(\Leftrightarrow x=28\left(TM\right)\)
Do đó : số lớn là : \(28+12=40\)
\(Vậy...\)
Trước tiên ta cần giải quyết vế dài dòng nhất đã là vế A :
Ta có :
\(A=\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}+...+\dfrac{1}{\left(3n+2\right)\left(3n+5\right)}\)
\(A=\dfrac{1}{3}.\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+...+\dfrac{1}{3n+2}-\dfrac{1}{3n+5}\right)\)
Rút gọn đi ta được :
\(A=\dfrac{1}{3}.\left(\dfrac{1}{5}-\dfrac{1}{3n+5}\right)\)
\(A=\dfrac{1}{3}.\dfrac{3n+5-5}{5\left(3n+5\right)}\)
\(A=\dfrac{n}{5\left(3n+5\right)}\)
Bây giờ ta chỉ còn so sánh A với \(\dfrac{1}{5}\) là xong :
Ta có : \(\dfrac{1}{15}=\dfrac{3n+5}{15\left(3n+5\right)}\)
\(\dfrac{n}{5\left(3n+5\right)}=\dfrac{3n}{15\left(3n+5\right)}\)
Do \(n\in N\) nên : \(\dfrac{3n}{15\left(3n+5\right)}< \dfrac{3n+5}{15\left(3n+5\right)}\)
\(\Rightarrow\dfrac{n}{5\left(3n+5\right)}< \dfrac{1}{15}\)
\(\Rightarrowđpcm\)
`(x+1)^2 -|3-2x| +6 = (x+2)^2`
`<=> x^2 +2x +1 -|3-2x| +6 = x^2 +4x +4`
`<=> 2x +7 -4x -4 -|3-2x| =0`
`<=> 3 -2x -|3-2x| =0`
`<=> |3-2x| = 3-2x`
`@` nếu` 3-2x >= 0 => x <= 3/2 => |3-2x| =3-2x`
`=>` PT có dạng
`3-2x =3-2x(luôn-đúng)`
`=>` PT luôn có nghiệm khi `x<=3/2`
`@` nếu` 3-2x <0 => x >3/2 => |3-2x| = 2x-3`
`=> PT có dạng
`2x-3 = 3-2x`
`<=> 2x +2x = 3+3`
`<=> 4x=6`
`=> x = 3/2( loại)`