ai bt lm thì giúp e vs ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đây là dạng toán nâng cao chuyên đề chuyển số thập phân thành phân số, hôm nay Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:
Bài 5:
0,300 = 0,3 = \(\dfrac{3}{10}\) = \(\dfrac{3\times100}{10\times100}\) = \(\dfrac{300}{1000}\) (bạn Hà viết đúng)
0,300 = 0,3 = \(\dfrac{3}{10}\) > \(\dfrac{3}{1000}\) (bạn Hạnh viết sai)
0,300 = 0,3 = \(\dfrac{3}{10}\) = \(\dfrac{3\times10}{10\times10}\) = \(\dfrac{30}{100}\) (bạn Lâm viết viết đúng)
Vậy bạn viết sai là bạn Hạnh
Chọn B. Bạn Hạnh
\(\left(13-x\right)\cdot28=56\\ 13-x=56:28\\ 13-x=2\\ x=13-2\\ x=11\)
Vậy x=11
$\color{#6495ED}{\text{(13 - x).28 = 56}}$
$\color{#6495ED}{\text{(13 - x) = 56 : 28}}$
$\color{#6495ED}{\text{ 13 - x = 2}}$
$\color{#6495ED}{\text{ x = 13 - 2}}$
$\color{#6495ED}{\text{ x = 11}}$
Vậy \(x=11\)
$\color{#6495ED}{\text{4}}$$\color{#87CEFA}{\text{5}}$$\color{#ADD8E6}{\text{6}}$
Bài 3. Số thập phân nào dưới đây được viết dưới dạng gọn nhất?
A. 60,06 B. 6,060 C. 60,600 D. 600,600
a)
\(P=4x^4+y^4\\ =4x^4+4x^2y^2+y^4-4x^2y^2\\ =\left(4x^4+4x^2y^2+y^2\right)-4x^2y^2\\ =\left(2x^2+y^2\right)^2-\left(2xy\right)^2\\ =\left(2x^2-2xy+y^2\right)\left(2x^2+2xy+y^2\right)\)
b)
\(Q=x^4+64\\ =x^4+16x^2+64-16x^2\\ =\left(x^4+16x^2+64\right)-16x^2\\ =\left(x^2+8\right)^2-\left(4x\right)^2\\ =\left(x^2-4x+8\right)\left(x^2+4x+8\right)\)
\(\left\{{}\begin{matrix}x+2y=1+3\\2x-3y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+2y=4\\2x-3y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x+4y=8\\2x-3y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+2y=4\\7y=7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+2=4\\y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=4-2=2\\y=1\end{matrix}\right.\)
Vậy: ...
\(\left\{{}\begin{matrix}x+2y=1+3\\2x-3y=1\end{matrix}\right.\)⇒ \(\left\{{}\begin{matrix}2x+4y=8\\2x-3y=1\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}2x+4y=8\\2x+4y-\left(2x-3y\right)=8-1\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}2x+4y=8\\2x+4y-2x+3y=7\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}2x+4y=8\\\left(2x-2x\right)+\left(4y+3y\right)=7\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}2x+4y=8\\0+7y=7\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}2x+4y=8\\y=1\end{matrix}\right.\)
Thay y = 1 vào biểu thức 2\(x\) + 4y = 8 ta có: 2\(x\) + 4.1 = 8
⇒ 2\(x\) + 4 = 8 ⇒ 2\(x\) = 4 ⇒ \(x\) = 4: 2 ⇒ \(x\) = 2
Vậy \(\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Bài 3:
Ta có: \(\dfrac{1}{5^2}< \dfrac{1}{4\cdot5};\dfrac{1}{6^2}< \dfrac{1}{5\cdot6};...;\dfrac{1}{100^2}< \dfrac{1}{99\cdot100}\)
\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{99\cdot100}\\=> \dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ =>\dfrac{1}{5^2}+\dfrac{1}{6^2}+..+\dfrac{1}{100^2}< \dfrac{1}{4}-\dfrac{1}{100}< \dfrac{1}{4}\left(1\right)\)
Ta có: \(\dfrac{1}{5^2}>\dfrac{1}{5\cdot6};\dfrac{1}{6^2}>\dfrac{1}{6\cdot7};...;\dfrac{1}{100^2}>\dfrac{1}{100\cdot101}\)
\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}>\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}+..+\dfrac{1}{100\cdot101}\\ =>\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}>\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{101}\\ =>\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}>\dfrac{1}{5}-\dfrac{1}{101}=\dfrac{96}{505}>\dfrac{96}{576}=\dfrac{1}{6}\left(2\right)\)
Từ (1) và (2) => \(\dfrac{1}{6}< \dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4}\)
a) Ta có: \(\widehat{cNb}+\widehat{MNb}=180^{\circ}\) (hai góc kề bù)
\(\Rightarrow\widehat{MNb}=180^{\circ}-\widehat{cNb}=180^{\circ}-55^{\circ}=125^{\circ}\)
b) Ta có: \(\widehat{MNb}=\widehat{aMN}\left(=125^{\circ}\right)\)
Mà hai góc này đều nằm ở vị trí so le trong
Nên \(Ma//Nb\)
1: \(\left(2x-1\right)^2-\left(4x^2-1\right)=0\)
=>\(\left(2x-1\right)^2-\left(2x-1\right)\left(2x+1\right)=0\)
=>\(\left(2x-1\right)\left(2x-1-2x-1\right)=0\)
=>-2(2x-1)=0
=>2x-1=0
=>\(x=\dfrac{1}{2}\)
2: \(\left(x+2\right)^2-x\left(x-3\right)=2\)
=>\(x^2+4x+4-x^2+3x=2\)
=>7x+4=2
=>7x=-2
=>\(x=-\dfrac{2}{7}\)
3: \(\left(x-5\right)^2-x\left(x+2\right)=5\)
=>\(x^2-10x+25-x^2-2x=5\)
=>-12x+25=5
=>-12x=5-25=-20
=>\(x=\dfrac{20}{12}=\dfrac{5}{3}\)
4: \(\left(x-1\right)^2+x\left(4-x\right)=11\)
=>\(x^2-2x+1+4x-x^2=11\)
=>2x+1=11
=>2x=10
=>x=5
5: \(\left(x-3\right)\left(x+3\right)=\left(x-5\right)^2\)
=>\(x^2-9=x^2-10x+25\)
=>-10x+25=-9
=>-10x=-25-9=-34
=>\(x=\dfrac{34}{10}=\dfrac{17}{5}\)
6: \(\left(2x+1\right)^2-4x\left(x-1\right)=17\)
=>\(4x^2+4x+1-4x^2+4x=17\)
=>8x+1=17
=>8x=16
=>x=2
7: \(\left(3x+1\right)^2-9x\left(x-2\right)=25\)
=>\(9x^2+6x+1-9x^2+18x=25\)
=>24x+1=25
=>24x=24
=>x=1
8: \(\left(3x-2\right)\left(3x+2\right)-9x\left(x-1\right)=0\)
=>\(9x^2-4-9x^2+9x=0\)
=>9x-4=0
=>9x=4
=>\(x=\dfrac{4}{9}\)
9: \(\left(x+2\right)^2-\left(x-2\right)\left(x+2\right)=0\)
=>(x+2)(x+2-x+2)=0
=>4(x+2)=0
=>x+2=0
=>x=-2
10: \(\left(x+2\right)^2-\left(x-3\right)\left(x+3\right)=-3\)
=>\(x^2+4x+4-\left(x^2-9\right)+3=0\)
=>\(x^2+4x+7-x^2+9=0\)
=>4x+16=0
=>4x=-16
=>x=-4
11: \(\left(3x+2\right)^2-\left(3x-5\right)\left(3x+2\right)=0\)
=>(3x+2)(3x+2-3x+5)=0
=>7(3x+2)=0
=>3x+2=0
=>3x=-2
=>\(x=-\dfrac{2}{3}\)
12: \(\left(x+3\right)^2-\left(x+2\right)\left(x-2\right)=4x+17\)
=>\(x^2+6x+9-x^2+4=4x+17\)
=>6x+13=4x+17
=>2x=4
=>x=2
13: \(3\left(x-1\right)^2+\left(x+5\right)\left(-3x+2\right)=-25\)
=>\(3\left(x^2-2x+1\right)+2x-3x^2+10-15x=-25\)
=>\(3x^2-6x+3-3x^2-13x+10=-25\)
=>-19x+13=-25
=>-19x=-38
=>x=2
14: \(\left(x+3\right)^2+\left(x-2\right)^2=2x^2\)
=>\(x^2+6x+9+x^2-4x+4=2x^2\)
=>2x=-13
=>\(x=-\dfrac{13}{2}\)