K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2023

\(x^2+y^2+2\left(x+y\right)-xy=0\)

\(\Leftrightarrow4x^2-4xy+4y^2+8\left(x+y\right)=0\)

\(\Leftrightarrow\left(2x-y\right)^2+4\left(2x-y\right)+4+3y^2+12y+12=-16\)

\(\Leftrightarrow\left(2x-y+2\right)^2+3\left(y+2\right)^2=-16\)

Dễ thấy VT \(\ge0\) ; VP < 0 nên phương trình vô nghiệm 

24 tháng 7 2023

\(x^2+y^2-2\left(x+y\right)=xy\)

\(\Rightarrow x^2-2x+1+y^2-2y+1=2+xy\)

\(\Rightarrow\left(x-1\right)^2+\left(y-1\right)^2=2+xy\)

Ta lại có : \(\left(x-1\right)^2+\left(y-1\right)^2\ge2\left(x-1\right)\left(y-1\right)\) (Bất đẳng thức Cauchy)

25 tháng 7 2023

Từ nhân vật Vũ Nương:

- Về số phận của người phụ nữ trong xã hội phong kiến xưa, em có suy nghĩ rằng: họ tồn tại là một con người nhưng lại không được hưởng quyền lợi tự do, công bằng mà đáng ra họ phải có; dù có tài sắc giỏi giang hiểu chuyện đến nhường nào cũng không thể thoát khỏi định kiến của mọi người về "phụ nữ", phải lấy chính cái chết của bản thân để minh oan cho nỗi oan từ ngay người chung chăn gối tạo ra. Số phận ấy lênh đênh, trôi nổi giữa dòng đời "phong kiến", thấp cổ bé họng dù bản thân công dung ngôn hạnh đủ điều.

- Về vai trò của người phụ nữ trong xã hội hiện nay, em có suy nghĩ rằng: họ đủ tài năng sức lực để sống tự lập kinh tế, không dựa dẫm, và không bị áp lực về định kiến "phụ nữ". Ngoài ra, họ còn đủ tri thức sức khỏe tham gia vào nhiều lĩnh vực khác nhau của xã hội, từ chính trị, kinh doanh, khoa học, y tế, giáo dục và nghệ thuật. Hơn hết, họ còn đóng vai trò rất quan trọng trong việc xây dựng, duy trì hòa bình, phát triển kinh tế, xã hội của đất nước.

10 tháng 10 2023

Từ nhân vật Vũ Nương:

-Về số phận của người phụ nữ trong xã hội phong kiến: không thể tự quyết định cho số phận của mình, không được xã hội coi trọng, dù có tài giỏi, có sắc đẹp như thế nào vẫn không thể thoát khỏi luân lí phong kiến ấy, giống những "trái bần trôi" trong thơ của Hồ Xuân Hương

-Về vai trò của người phụ nữ trong xã hội hiện nay: họ đã được xã hội công nhận, thoát khỏi định kiến phong kiến, đồng thời họ đã có đủ năng lực để tham gia vào các công việc, hoạt động của xã hội, đồng thời có thể tự lập mà không dựa dẫm vào ai

24 tháng 7 2023

Hình bạn tự vẽ nha .

Xét : \(\Delta ABC\) đều có đường cao là AH.

\(\Rightarrow AH\) cũng là đường trung tuyến của \(\Delta ABC\)

\(\Rightarrow HC=\dfrac{1}{2}BC=\dfrac{1}{2}a\)

Xét \(\Delta AHC\) vuông tại H :

\(\Rightarrow AH^2=AC^2-HC^2\)

\(\Rightarrow AH^2=a^2-\dfrac{1}{4}a^2=\dfrac{3}{4}a^2\)

\(\Rightarrow AH=a\sqrt{\dfrac{3}{4}}\)

24 tháng 7 2023

Tam giác đều ABC \(\Rightarrow A=B=C=60^o\)

⇒ Δ ABH là Δ nửa đều

\(\Rightarrow HB=\dfrac{a}{2}\Rightarrow AH=\dfrac{a\sqrt[]{3}}{2}\)

24 tháng 7 2023

\(\dfrac{HB}{HC}=\dfrac{2}{5}\Rightarrow\dfrac{HB}{2}=\dfrac{HC}{5}=\dfrac{HB.HC}{2.5}=\dfrac{AH^2}{10}=\dfrac{256}{10}=\dfrac{128}{5}\)

\(\Rightarrow HB=\dfrac{128}{5}.2=\dfrac{256}{5}\left(cm\right);HC=\dfrac{128}{5}.5=128\left(cm\right)\)

\(\Rightarrow BC=HB+HC=\dfrac{256}{5}+128=\dfrac{896}{5}\left(cm\right)\)

\(AC^2=AH^2+HC^2=256+\left(\dfrac{256}{2}\right)^2=256\left(1+\dfrac{256}{4}\right)\Rightarrow AC=16\sqrt[]{1+\dfrac{256}{4}}=16\sqrt[]{\dfrac{260}{4}}=16.\dfrac{1}{2}.2\sqrt[]{65}=16\sqrt[]{65}\left(cm\right)\)

\(AB^2=AH^2+BH^2=256+\left(\dfrac{256}{5}\right)^2=256\left(1+\dfrac{256}{25}\right)\Rightarrow AB=16\sqrt[]{1+\dfrac{256}{25}}=\dfrac{16}{5}\sqrt[]{281}\left(cm\right)\)

Chu vi tam giác ABC là : \(AB+AC+BC\)

\(=\dfrac{16}{5}\sqrt[]{281}+16\sqrt[]{65}+\dfrac{896}{5}\)

\(=16\left(\dfrac{1}{5}\sqrt[]{281}+\sqrt[]{65}+\dfrac{56}{5}\right)\)

\(=16\left(\sqrt[]{65}+\dfrac{56+\sqrt[]{281}}{5}\right)\left(cm\right)\)

24 tháng 7 2023

\(\sqrt{x+1}=3x+7\) (ĐK: \(x\ge-1\))

\(\Leftrightarrow x+1=\left(3x+7\right)^2\)

\(\Leftrightarrow x+1=9x^2+42x+49\)

\(\Leftrightarrow x+1-9x^2-42x-49=0\)

\(\Leftrightarrow-9x^2-41x-48=0\)

Ta có: \(\Delta=\left(-41\right)^2-4\cdot-9\cdot-48=-48< 0\)

Vậy Pt vô nghiệm

24 tháng 7 2023

\(\sqrt[]{x+1}=3x-7\Leftrightarrow\left\{{}\begin{matrix}3x-7\ge0\\x+1=\left(3x-7\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{7}{3}\\x+1=9x^2-42x+49\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{7}{3}\\9x^2-43x+48=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Rightarrow\Delta=1849-1728=121\Rightarrow\sqrt[]{\Delta}=11\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{43+11}{2.9}=3\\x_2=\dfrac{43-11}{2.9}=\dfrac{32}{18}=\dfrac{16}{9}\end{matrix}\right.\)

so với điều kiện \(x\ge\dfrac{7}{3}\)

\(\Rightarrow x=3\)

24 tháng 7 2023

A B C H E F I M K

1/

Xét tg vuông ABH có

\(AH^2=AE.AB\)  (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

Xét tg vuông ACH có

\(AH^2=AF.AC\)  (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

\(\Rightarrow AE.AB=AF.AC\) (cùng bằng \(AH^2\) )

2/

\(HE\perp AB\) (gt)

\(AC\perp AB\) (gt) \(\Rightarrow AF\perp AB\)

=> AF//HE (cùng vuông góc với AB) (1)

Ta có

\(HF\perp AC\) (gt)

\(AB\perp AC\) (gt) \(\Rightarrow AE\perp AC\)

=> AE//HF (cùng vuông góc với AC) (2)

Từ (1) và (2) => AEHF là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hình bình hành )

=> AE = HF

Xét tg vuông AHC có

\(HF^2=AF.FC\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông xuống cạnh huyền bằng tích giữa 2 hình chiếu của 2 cạnh góc vuông trên cạnh huyền)

\(\Rightarrow AE^2=AF.FC\)

3/

E; F cùng nhìn AH dưới góc \(90^o\)

=> AEHF là tứ giác nội tiếp

\(\Rightarrow\widehat{BAH}=\widehat{EFH}\) (góc nội tiếp cùng chắn cung EH) (1)

\(\widehat{AEF}=\widehat{EFH}\) (góc so le trong) (2)

\(\widehat{AEF}=\widehat{IEB}\) (góc đối đỉnh) (3)

\(\widehat{BAH}=\widehat{ACB}\) (cùng phụ với \(\widehat{ABC}\) ) (4)

Xét tg IBE và tg IFC có

Từ (1) (2) (3) (4) \(\Rightarrow\widehat{IEB}=\widehat{ACB}\)

\(\widehat{EIB}\) chung

=> tg IBE đồng dạng với tg IFC (g.g.g)

\(\Rightarrow\dfrac{IE}{IC}=\dfrac{IB}{IF}\Rightarrow IE.IF=IB.IC\)

4/

Ta có

\(\widehat{BAK}+\widehat{BAM}=\widehat{MAK}=90^o\)

\(\widehat{CAM}+\widehat{BAM}=\widehat{BAC}=90^o\)

\(\Rightarrow\widehat{BAK}=\widehat{CAM}\)

Mà \(AM=\dfrac{BC}{2}=MB=MC\) (trong tg vuông trung tuyến thuộc cạnh huyền thì bằng nửa cạnh huyền)

=> tg AMC cân tại M \(\Rightarrow\widehat{CAM}=\widehat{ACM}\)

\(\Rightarrow\widehat{ACM}=\widehat{BAK}\)

Xét tg ABK và tg ACK có

\(\widehat{AKC}\) chung

\(\widehat{BAK}=\widehat{ACM}\) (cmt)

=> tg ABK đồng dạng với tg ACK (g.g.g)

\(\Rightarrow\dfrac{KB}{AK}=\dfrac{AK}{KC}\Rightarrow AK^2=KB.KC\)

Xét tg vuông AKM có

\(AK^2=KH.KM\) (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

\(\Rightarrow KH.KM=KB.KC\)