Cho mình xin đáp án đề này ạ <3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử bạn Phương làm đúng thì nghiệm của đa thức:
(m+3)(m-3) cũng là nghiệm của đa thức m(m-3) + 3
(m+3)(m-3) =0 ⇒ \(\left[{}\begin{matrix}m=-3\\m=3\end{matrix}\right.\)
với m = - 3 thay vào đa thức m(m-3) + 3 ta có:
3\(\times\)( 3 - 3) + 3 = 3 \(\ne\) 0 ( trái với giả sử)
Vậy Phương làm như vậy là sai
\(a^3+b^3+c^3-3abc\) \(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ca-bc-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
Vậy \(a^3+b^3+c^3=3abc\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)
Vậy để \(a^3+b^3+c^3=3abc\) thì \(a+b+c=0\) hoặc \(a=b=c\)
Nửa chu vi thửa ruộng là:
600 : 2 = 300 m
Chiều dài thửa ruộng là:
(300 + 190) : 2 = 245 m
Chiều rộng là:
300 - 245 = 55 m
Diện tích thửa ruộng là:
245 x 55 = 13475 m2
Ta suy ra nửa chu vi của thửa ruộng là \(300m\)
Gọi \(0< x< 300\) chiều dài của thửa ruộng (m), khi đó chiều rộng của thửa ruộng là \(300-x\). Do \(x\) là chiều dài nên \(x\ge300-x\Leftrightarrow x\ge150\)
Hơn nữa, chiều rộng của thửa ruộng cũng bằng \(x-190\) nên ta có pt \(300-x=x-190\) \(\Leftrightarrow2x=490\Leftrightarrow x=245\) (nhận).
Suy ra chiều rộng của thửa ruộng là \(245-190=55\) (m). Vậy diện tích thửa ruộng là \(245.55=13475\left(m^2\right)\)