Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ : \(x\ge-4\)
(2x + 1)2 = (x + 4)\(\sqrt{4x^2+1}\)
<=> \(4x^2+1+4x=x\sqrt{4x^2+1}+4\sqrt{4x^2+1}\)
<=> \(\left(\sqrt{4x^2+1}-4\right)\left(\sqrt{4x^2+1}-x\right)=0\)
<=> \(\left[{}\begin{matrix}\sqrt{4x^2+1}=4\\\sqrt{4x^2+1}=x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x^2=15\\\left\{{}\begin{matrix}3x^2+1=0\\x\ge0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm\dfrac{\sqrt{15}}{2}\left(tm\right)\\∄x\end{matrix}\right.\Leftrightarrow x=\pm\dfrac{\sqrt{15}}{2}\)
\(\sqrt{\dfrac{3x^2-3x-2x+2}{4x^2-12x+9}}=\sqrt{\dfrac{\left(3x-2\right)\left(x-1\right)}{\left(2x-3\right)^2}}\)
đk \(\left\{{}\begin{matrix}\left(3x-2\right)\left(x-1\right)>0\\2x-3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>1\\x< \dfrac{2}{3}\\x\ne\dfrac{3}{2}\end{matrix}\right.\)
\(ĐKXĐ:x\ge0\)
\(4x-2\sqrt{x}=0\)
\(\Leftrightarrow2\sqrt{x}\left(2\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\2\sqrt{x}-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=\dfrac{1}{4}\left(tm\right)\end{matrix}\right.\)
đk x >= 0
\(2\sqrt{x}\left(2\sqrt{x}-1\right)=0\Leftrightarrow x=0;x=\dfrac{1}{4}\left(tm\right)\)
a, đk \(\left\{{}\begin{matrix}x^2-4x+4\ge0\\x-3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\left(dung\right)\\x\ne3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in R\\x\ne3\end{matrix}\right.\)
b, đk \(\left\{{}\begin{matrix}2x-3>0\\x-7>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{3}{2}\\x>7\end{matrix}\right.\Leftrightarrow x>7\)
c, đk \(x-10\sqrt{x}+25>0\Leftrightarrow\left(\sqrt{x}-5\right)^2>0\Rightarrow x\ne25\)
1, \(=\dfrac{\sqrt{6}\left(\sqrt{6}-1\right)}{\sqrt{6}-1}+\dfrac{\sqrt{6}\left(\sqrt{6}+1\right)}{\sqrt{6}}=\sqrt{6}+\sqrt{6}+1=2\sqrt{6}+1\)
2, \(=\dfrac{\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}}+\dfrac{\sqrt{3}\left(\sqrt{2}-1\right)}{1-\sqrt{2}}=\sqrt{3}+1-\sqrt{3}=1\)