tìm hpt có nghiệm duy nhất
\(\hept{\begin{cases}3x-2y=-1\\x+y=3\\2mx-\left(4-m\right)=m+1\end{cases}}\)
bạn nào lm đc giúp mình nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài của bạn thặc zi ziệu!
Ta có: \(a^4+a^4+a^4+\frac{1}{256}\ge4\sqrt[4]{a^4.a^4.a^4.\frac{1}{256}}=a^3\)
\(\Leftrightarrow a^3-3a^4\le\frac{1}{256}\)
\(\Leftrightarrow a^3\left(1-3a\right)\le\frac{1}{256}\)
\(\Leftrightarrow\frac{1}{a^3\left(1-3a\right)}\ge256\)
\(\Leftrightarrow\frac{1}{a^2\left(1-3a\right)}\ge256a\)
\(\Leftrightarrow\frac{1}{a^2\left(3b+3c+3d-2\right)}\ge256a\)
C/m tương tự
\(\frac{1}{b^2\left(3c+3d+3a-2\right)}\ge256b\)
\(\frac{1}{c^2\left(3d+3b+3a-2\right)}\ge256c\)
\(\frac{1}{d^2\left(3a+3b+3c-2\right)}\ge256d\)
Cộng từng vế của 4 bđt trên lại ta được
\(P\ge256\left(a+b+c\right)=256\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a+b+c+d=1\\a=b=c=d\end{cases}}\Leftrightarrow a=b=c=d=\frac{1}{4}\)
Vậy ..........
P/S: mong cậu lần sau viết đúng tên tớ vào -.-
Plus: để ý thì bài này giống bài hồi nãy thì phải
cách khác nè :))
\(\frac{1}{a^2\left(3b+3c+3d-2\right)}=\frac{1}{a^2\left(b+c+d-2a\right)}=\frac{1}{a^2\left(1-3a\right)}=\frac{\left(\frac{1}{a}\right)^2}{1-3a}\)
mấy cái kia tương tự
\(P=\frac{\left(\frac{1}{a}\right)^2}{1-3a}+\frac{\left(\frac{1}{b}\right)^2}{1-3b}+\frac{\left(\frac{1}{c}\right)^2}{1-3c}+\frac{\left(\frac{1}{d}\right)^2}{1-3d}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{d}+\frac{1}{c}\right)^2}{4-3\left(a+b+c+d\right)}\)
\(\ge\frac{\left[\left(\frac{1+1+1+1}{a+b+c+d}\right)^2\right]^2}{4-3\left(a+b+c+d\right)}=\frac{\left(4^2\right)^2}{4-3}=256\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=d=\frac{1}{4}\)
:))
Ta có : f(0) = a.02 + b.0 + c = c\(\in\)Z
f(1) = a.12 + b.1 + c = a + b + c \(\in\)Z
Nên a + b \(\in\)Z
f(2) = a.22 + b.2 + c = 4a + 2b + c \(\in\)Z
mà 4a + 2b + c = 2a + 2a + 2b + c = 2a + 2(a+b) + c
Nên 2a \(\in\)Z
1000000000=0+100000000=1+999999999=2+999999998=......
nhiều lắm
hok tốt
Sửa đề pt 2 thành căn x
\(\hept{\begin{cases}\sqrt{x}+\sqrt{32-x}-y^2=-3\\\sqrt{x}+\sqrt{32-x}+6y=24\end{cases}}\left(ĐKXĐ:x\ge0;x\ne32\right)\)
Đặt \(\sqrt{x}+\sqrt{32-x}\Rightarrow t\left(t\ge0\right)\)
Hệ phương trình trên trở thành
\(\hept{\begin{cases}t-y^2=-3\\t+6y=24\end{cases}}\)\(< =>\hept{\begin{cases}6y-21-y^2=0\left(+\right)\\t=6y-24\left(++\right)\end{cases}}\)
\(\left(+\right)< =>\Delta=6^2-4\left(-21\right)=120>0\)
\(< =>\orbr{\begin{cases}y=\frac{-6+\sqrt{120}}{-2}=3-\sqrt{30}\\y=\frac{-6-\sqrt{120}}{-2}=3+\sqrt{30}\end{cases}}\)
Với \(y=3-\sqrt{30}\)thì \(\left(++\right)< =>t=6\left(3-\sqrt{30}\right)-24\)
\(< =>t=18-6\sqrt{30}-24=-6-6\sqrt{30}\)
Khi đó \(x+\sqrt{32-x}=-6-6\sqrt{30}\)
\(< =>x^2+32-x+2\sqrt{32x-x^2}=36+1080+72\sqrt{30}\)
Đến đây bạn giải delta là ra !
Với \(y=3+\sqrt{30}\)thì \(t=6\left(3+\sqrt{30}\right)-24\)
\(< =>t=6\sqrt{30}-6=6\left(\sqrt{30}-1\right)\)
Khi đó : \(\sqrt{x}+\sqrt{32-x}=6\left(\sqrt{30}-1\right)\)
\(< =>x^2+32-x+2\sqrt{32x-x^2}=36\left(30-2\sqrt{30}+1\right)\)
Đến đây bạn cũng dùng delta là ra nhé !
Vậy bạn đối chiếu đk là xong
Cauchy-Schwarz dạng Engel 2 lần :
\(P=\frac{1}{a\left(2b+2c-1\right)}+\frac{1}{b\left(2c+2a-1\right)}+\frac{1}{c\left(2a+2b-1\right)}\)
\(P=\frac{1}{a\left(-a+b+c\right)}+\frac{1}{b\left(a-b+c\right)}+\frac{1}{c\left(a+b-c\right)}\)
\(P=\frac{1}{a-2a^2}+\frac{1}{b-2b^2}+\frac{1}{c-2c^2}\ge\frac{9}{\left(a+b+c\right)-2\left(a^2+b^2+c^2\right)}\ge\frac{9}{1-\frac{2}{3}}=\frac{9}{\frac{1}{3}}=27\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)
Cách của bạn sao chỗ cuối lại thế ạ ? Bạn giải hộ mình rõ hơn được không ?
\(x+y=2\Rightarrow y=2-x\)
\(xy=x.\left(2-x\right)=2x-x^2=-\left(x^2-2x\right)\)
\(=-\left(x^2-2x+1-1\right)=-\left(x-1\right)^2+1=1-\left(x-1\right)^2\le1\)
=> đpcm
( Dấu "=" xảy ra <=> x = 1 => y = 2 - x = 2 - 1 = 1 )
\(\hept{\begin{cases}3x-2y=-1\\x+y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}3x-2y=-1\\2x+2y=6\end{cases}}\Leftrightarrow\hept{\begin{cases}3x-2y+2x+2y=-1+6\\2x+2y=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}5x=5\\x+y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)
Từ phương trình 1 và 2 ta giả đc x=1 và y=2
Hệ có nghiệm duy nhất thì x=1 và y=2 thay vào phương trình 3 sẽ thỏa mãn
NHầm đề phải ko? thiếu y
2m.x-(4-m)y=m+1
2m. 1-(4-m)2=m+1
3m=9
m=3
Thử lại thỏa mãn