Tìm x,biết:
( x + 2 )2 = ( 2x - 1)2
Mọi người giải rõ cách làm giùm mình nha!Mình cảm ơn nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
a) Ta có tam giác ABC vuông cân tại A, nên góc BAC = 45 độ. Vì tam giác ACE vuông cân tại E, nên góc CAE = 45 độ. Từ đó suy ra góc CAE + góc BAC = 90 độ, tức là EC vuông góc với BC.
b) Vì tam giác ABC vuông cân tại A, nên góc BAC = 45 độ. Vì tam giác ACE vuông cân tại E, nên góc CAE = 45 độ. Từ đó suy ra góc BAE = góc BAC + góc CAE = 45 độ + 45 độ = 90 độ. Do đó, tứ giác ABCE là tứ giác vuông.
Bài 5:
a) Gọi K là giao điểm của đường thẳng AM và BH. Ta cần chứng minh góc BAK = góc CAK.
Vì CM = CA, ta có góc CMA = góc CAM. Vì đường thẳng AM song song với CA, nên góc CMA = góc KAB (do AB cắt đường thẳng AM tại I). Từ đó suy ra góc CAM = góc KAB.
Vì AH là đường cao, nên góc BAH = góc CAH. Từ đó suy ra góc BAK = góc CAK.
Vậy, AM là phân giác của góc BAH.
b) Ta có AB + AC = AB + AH + HC = BH + HC > BC (theo bất đẳng thức tam giác).
Vậy, luôn luôn có AB + AC < AH + BC.
bài 1 :
a) Ta có MQ//NP (theo giả thiết).
Chứng minh MN = PQ:
Vì MN//PQ và MQ//NP, ta có hai tam giác MNP và QMQ' đồng dạng (theo nguyên lý đồng dạng của tam giác có hai cặp góc tương đồng bằng nhau).
Do đó, ta có tỉ số đồng dạng giữa các cạnh của hai tam giác là:
MN/MQ = NP/QM
Vì MQ//NP, nên ta có tỉ số đồng dạng:
MN/MQ = NP/NP
Từ đó suy ra: MN = PQ.
Chứng minh MQ = NP:
Vì MQ//NP, nên ta có tỉ số đồng dạng:
MQ/MN = NP/PQ
Vì MN = PQ (đã chứng minh ở trên), nên ta có tỉ số đồng dạng:
MQ/MN = NP/NP
Từ đó suy ra: MQ = NP.
b) Ta có MN = PQ (theo giả thiết).
Chứng minh MQ//NP:
Giả sử MQ không // NP. Khi đó, MQ và NP sẽ cắt nhau tại một điểm O.
Vì MN//PQ và MQ//NP, nên ta có hai tam giác MNP và QMQ' đồng dạng (theo nguyên lý đồng dạng của tam giác có hai cặp góc tương đồng bằng nhau).
Do đó, ta có tỉ số đồng dạng giữa các cạnh của hai tam giác là:
MN/MQ = NP/QM
Từ đó suy ra: MN/MQ = NP/NP
Vì MQ//NP, nên ta có tỉ số đồng dạng:
MN/MQ = NP/NP
Từ đó suy ra: MN = PQ.
Điều này mâu thuẫn với giả thiết MN = PQ (đã cho). Vậy giả sử MQ không // NP là sai.
Do đó, ta kết luận rằng MQ//NP.
Chứng minh MQ = NP:
Vì MQ//NP, nên ta có tỉ số đồng dạng:
MQ/MN = NP/PQ
Vì MN = PQ (đã chứng minh ở trên), nên ta có tỉ số đồng dạng:
MQ/MN = NP/NP
Từ đó suy ra: MQ = NP.
bài 2 :
a) Ta có MN = MQ và góc M = 50 độ. Vì tứ giác MNPQ là tứ giác cân (hai cạnh bằng nhau), nên góc N = góc Q.
Vì tổng các góc trong một tứ giác bằng 360 độ, ta có:
góc M + góc N + góc P + góc Q = 360 độ
Thay giá trị vào, ta có:
50 độ + góc N + 90 độ + góc N = 360 độ
Simplifying the equation:
140 độ + 2góc N = 360 độ
Trừ 140 độ từ hai phía:
2góc N = 220 độ
Chia cho 2:
góc N = 110 độ
Vậy số đo góc MQN là 110 độ.
b) Ta đã biết góc P = 90 độ. Vì tứ giác MNPQ là tứ giác cân (hai cạnh bằng nhau), nên góc M = góc Q.
Vì tổng các góc trong một tứ giác bằng 360 độ, ta có:
góc M + góc N + góc P + góc Q = 360 độ
Thay giá trị vào, ta có:
góc M + 110 độ + 90 độ + góc M = 360 độ
Simplifying the equation:
2góc M + 200 độ = 360 độ
Trừ 200 độ từ hai phía:
2góc M = 160 độ
Chia cho 2:
góc M = 80 độ
Vậy số đo góc MQP là 80 độ.
c) Để chứng minh MP vuông góc với NQ, ta cần chứng minh rằng góc MPN + góc NQP = 90 độ.
Ta đã biết góc P = 90 độ. Vì tứ giác MNPQ là tứ giác cân (hai cạnh bằng nhau), nên góc M = góc Q.
Vì tổng các góc trong một tứ giác bằng 360 độ, ta có:
góc M + góc N + góc P + góc Q = 360 độ
Thay giá trị vào, ta có:
góc M + góc N + 90 độ + góc M = 360 độ
Simplifying the equation:
2góc M + góc N = 270 độ
Vì góc M = góc Q, nên ta có:
2góc M + góc M = 270 độ
\(A=n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)
Tich trên là tích của 3 số tự nhiên liên tiếp
\(\left(n-1\right)n\left(n+1\right)⋮24\) khi đồng thời chia hết cho 3 và 8
+ C/m tích trên chia hết cho 3
Nếu \(n⋮3\Rightarrow A⋮3\)
Nếu n chia 3 dư 1 \(\Rightarrow n-1⋮3\Rightarrow A⋮3\)
Nếu n chia 3 dư 2 \(\Rightarrow n+1⋮3\Rightarrow A⋮3\)
\(\Rightarrow A⋮3\forall n\)
C/m tích trên chia hết cho 8
Do n là số tự nhiên lẻ
Nếu \(n=1\Rightarrow A=0⋮8\)
Nếu \(n\ge3\) => (n-1) và (n+1) chẵn
Đặt \(n=2k+1\left(k\ge1\right)\)
\(\Rightarrow A=\left(2k+1-1\right)\left(2k+1\right)\left(2k+1+1\right)=\)
\(=2k\left(2k+1\right)\left(2k+2\right)=\left(4k^2+2k\right)\left(2k+2\right)=\)
\(=8k^3+8k^2+4k^2+4k=8\left(k^3+k^2\right)+4k\left(k+1\right)\)
Với k chẵn đặt \(k=2p\Rightarrow4k\left(k+1\right)=8p\left(2p+1\right)⋮8\)
\(\Rightarrow A=8\left(k^3+k^2\right)+8p\left(2p+1\right)⋮8\)
Với k lẻ đặt \(k=2p+1\Rightarrow4k\left(k+1\right)=4\left(2p+1\right)\left(2p+1+1\right)=\)
\(4\left(2p+1\right)2\left(p+1\right)=8\left(2p+1\right)\left(p+1\right)⋮8\)
\(\Rightarrow A⋮8\forall n\)
\(\Rightarrow A⋮3x8\forall n\Rightarrow A⋮24\forall n\)
A B C D M E
\(MD\perp AB\) (gt)
\(AC\perp AB\) (gt)
=> MD//AC (1) \(\Rightarrow\widehat{BMD}=\widehat{C}\) (góc đồng vị)
Mà \(\widehat{B}=\widehat{C}\) (gt)
\(\Rightarrow\widehat{B}=\widehat{BMD}\) => tg BMD vuông cân tại D => MD=BD (2)
\(ME\perp AC\) (gt)
\(AB\perp AC\) (gt)
=> ME//AB (3)
C/m tương tự ta cũng có tg CME vuông cân tại E => ME=CE (4)
Từ (1) và (3) => ADME là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau)
=> MD = AE (5) và ME = AD (6)
Ta có
\(C_{ADME}=\left(MD+ME\right)x2\)
AE = AC-CE Từ (5) => MD=AC - CE Từ (4) => MD = AC - ME
\(\Rightarrow C_{ADME}=\left(AC-ME+ME\right)x2=2xAC\) không đổi
Bạn có ghi sai đề không vậy? Mình nghĩ đẳng thức cuối nó là \(z=\left(a-b+c\right)^2+8ca\).
Khi đó theo nguyên lí Dirichlet, trong 3 số \(a,b,c\) sẽ tồn tại 2 số nằm cùng phía so với 0 (cùng lớn hơn 0 hoặc cùng bé hơn 0). Giả sử 2 số này là \(a,b\). Khi đó hiển nhiên \(ab>0\) (do a, b cùng dấu), từ đó suy ra \(x=\left(a-b+c\right)^2+8ab>0\) , đpcm.
Ta sẽ chứng minh rằng, một đa giác lồi có \(n\) đỉnh \(\left(n\ge3\right)\) thì tổng số đo các góc trong là \(180^o\left(n-2\right)\). Thật vậy, với \(n=3\) thì điều này tương đương với việc tổng số đo của các góc trong của 1 tam giác bằng \(180^o\) , luôn đúng. Giả sử khẳng định đúng đến \(n=k\). Khi đó ta cần chứng minh khẳng định đúng với \(n=k+1\).
Xét đa giác \(A_1A_2...A_{k+1}\) gồm \(k+1\) đỉnh. Ta kẻ đường chéo \(A_1A_k\) của đa giác. Khi đó tổng số đo các góc trong của đa giác \(A_1A_2...A_{k+1}\) chính bằng tổng của tổng các số đo của các góc trong đa giác \(A_1A_2...A_k\) và tam giác \(A_1A_kA_{k+1}\) và bằng:
\(180^o\left(k-2\right)+180^o=180^o\left(k+1-2\right)\)
Vậy khẳng định đúng với \(n=k+1\), ta có đpcm. Từ đây suy ra tổng các góc trong của ngũ giác là \(180^o\left(5-2\right)=540^o\), suy ra tổng các góc ngoài của ngũ giác là \(5.180^o-540^o=360^o\).
\(a,f\left(x\right)+g\left(x\right)\\ =10x^5-5x^5-8x^4+2x^4+6x^3-4x^3-4x^2+6x^2+2x-8x+1+10+3x^6+2x^6\\ =5x^6+5x^5-6x^4+2x^3+2x^2-6x+11\\ f\left(x\right)-g\left(x\right)\\ =3x^6-2x^6+10x^5+5x^5-8x^4-2x^4+6x^3+4x^3-4x^2-6x^2+2x+8x+1-10\\ =x^6+15x^5-10x^4+10x^3-10x^2+10x-9\)
\(b,f\left(x\right) +g \left(x\right)=3x^4+2x^4+15x^3-15x^3+7x^2-7x^2+3x-3x-\dfrac{1}{2}+\dfrac{1}{2}=5x^4\\ f\left(x\right)-g\left(x\right)=3x^4-2x^4+15x^3+15x^3+7x^2+7x^2+3x+3x-\dfrac{1}{2}-\dfrac{1}{2}\\ =x^4+30x^3+14x^2+6x-1\)
chuyển vế sang r phân tích thành nhân tử, có thể dùng máy tính bỏ túi nhé bạn
câu 1: 9\(x^2\) + 12\(x\) + 5 =11
(3\(x\))2 + 2.3.\(x\) .2 + 22 + 1 = 11
(3\(x\) + 2)2 = 11 - 1
(3\(x\) + 2)2 = 10
\(\left[{}\begin{matrix}3x+2=\sqrt{10}\\3x+2=-\sqrt{10}\end{matrix}\right.\)
\(\left[{}\begin{matrix}3x=\sqrt{10}-2\\3x=-\sqrt{10}-2\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{\sqrt{10}-2}{3}\\x=\dfrac{-\sqrt{10}-2}{3}\end{matrix}\right.\)
Vậy S = {\(\dfrac{-\sqrt{10}-2}{3}\); \(\dfrac{\sqrt{10}-2}{3}\)}
Câu 2: 6\(x^2\) + 16\(x\) + 12 = 2\(x^2\)
6\(x^2\) + 16\(x\) + 12 - 2\(x^2\) = 0
4\(x^2\) + 16\(x\) + 12 = 0
(2\(x\))2 + 2.2.\(x\).4 + 16 - 4 = 0
(2\(x\) + 4)2 = 4
\(\left[{}\begin{matrix}2x+4=2\\2x+4=-2\end{matrix}\right.\)
\(\left[{}\begin{matrix}2x=-2\\2x=-6\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)
S = { -3; -1}
3, 16\(x^2\) + 22\(x\) + 11 = 6\(x\) + 5
16\(x^2\) + 22\(x\) - 6\(x\) + 11 - 5 = 0
16\(x^2\) + 16\(x\) + 6 = 0
(4\(x\))2 + 2.4.\(x\) . 2 + 22 + 2 = 0
(4\(x\) + 2)2 + 2 = 0 (1)
Vì (4\(x\)+ 2)2 ≥ 0 ∀ ⇒ (4\(x\) + 2)2 + 2 > 0 ∀ \(x\) vậy (1) Vô nghiệm
S = \(\varnothing\)
Câu 4. 12\(x^2\) + 20\(x\) + 10 = 3\(x^2\) - 4\(x\)
12\(x^2\) + 20\(x\) + 10 - 3\(x^2\) + 4\(x\) = 0
9\(x^2\) + 24\(x\) + 10 = 0
(3\(x\))2 + 2.3.\(x\).4 + 16 - 6 = 0
(3\(x\) + 4)2 = 6
\(\left[{}\begin{matrix}3x+4=\sqrt{6}\\3x+4=-\sqrt{6}\end{matrix}\right.\)
\(\left[{}\begin{matrix}3x=-4+\sqrt{6}\\3x=-4-\sqrt{6}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{\sqrt{6}-4}{3}\\x=-\dfrac{\sqrt{6}+4}{3}\end{matrix}\right.\)
S = {\(\dfrac{-\sqrt{6}-4}{3}\); \(\dfrac{\sqrt{6}-4}{3}\)}
\(\left(x+2\right)^2=\left(2x-1\right)^2\\ \Leftrightarrow\left(x+2\right)^2-\left(2x-1\right)^2=0\\\Leftrightarrow\left[x+2-\left(2x-1\right)\right]\left[x+2+2x-1\right]=0\\ \Leftrightarrow\left(x+2-2x+1\right)\left(x+2+2x-1\right)=0\\ \Leftrightarrow\left(-x+3\right)\left(3x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}-x+3=0\\3x+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}-x=-3\\3x=-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{1}{3}\end{matrix}\right.\)
\(\left(x+2\right)^2=\left(2x-1\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=2x-1\\x+2=-\left(2x-1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2x=-1-2\\x+2=-2x+1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-x=-3\\x+2x=1-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\3x=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{1}{3}\end{matrix}\right.\)