K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2023

a) Ta có:

\(x^2-x+1\)

\(=x^2-2\cdot\dfrac{1}{2}\cdot x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Mà: \(\left(x-\dfrac{1}{2}\right)^2\ge0\) và \(\dfrac{3}{4}>0\) nên

\(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

\(\Rightarrow x^2-x+1>0\forall x\)

4
AH
Akai Haruma
Giáo viên
13 tháng 8 2023

1.

$3x^4-48=3(x^4-16)=3[(x^2)^2-4^2]=3(x^2-4)(x^2+4)$

$=3(x-2)(x+2)(x^2+4)$

2. 

$x^3-4x^2+8x-8=(x^3-8)-(4x^2-8x)$
$=(x-2)(x^2+2x+4)-4x(x-2)=(x-2)(x^2+2x+4-4x)=(x-2)(x^2-2x+4)$

3.

$x^4-27x=x(x^3-27)=x(x^3-3^3)=x(x-3)(x^2+3x+9)$

4.

$x^4-x^3+x^2-1=(x^4-x^3)+(x^2-1)=x^3(x-1)+(x-1)(x+1)$

$=(x-1)(x^3+x+1)$

 

AH
Akai Haruma
Giáo viên
13 tháng 8 2023

5.

$x^5+x^3-x^2-1=(x^5+x^3)-(x^2+1)=x^3(x^2+1)-(x^2+1)$
$=(x^2+1)(x^3-1)=(x^2+1)(x-1)(x^2+x+1)$

6.

$x^3+2x^2+2x+1=(x^3+x^2)+(x^2+2x+1)=x^2(x+1)+(x+1)^2$
$=(x+1)(x^2+x+1)$

7.

$x^3+x^2-4x-4=(x^3+x^2)-(4x+4)=x^2(x+1)-4(x+1)$

$=(x+1)(x^2-4)=(x+1)(x-2)(x+2)$

8.

$x^4-2x^3+2x-1=(x^4-2x^3+x^2)-(x^2-2x+1)$

$=(x^2-x)^2-(x-1)^2=x^2(x-1)^2-(x-1)^2=(x-1)^2(x^2-1)=(x-1)^2(x-1)(x+1)$

AH
Akai Haruma
Giáo viên
12 tháng 8 2023

Lời giải:

a. $A=3xy(x^2+2xy+y^2)=3xy(x+y)^2=3.\frac{1}{2}.\frac{-1}{3}(\frac{1}{2}+\frac{-1}{3})^2=\frac{-1}{72}$

b. 

$B=(-1)^2.3^2+(-1).3+(-1)^3+3^3=32$

c.

$D=5^2+4.5.1-3.1^3=42$

d.

$D=2xy(x+y)=2.1(-3)(1-3)=12$

e. 

$M=\frac{(x+2)(2x-1)}{x+2}=2x-1=2(-1)-1=-3$ 

loading...

2
AH
Akai Haruma
Giáo viên
12 tháng 8 2023

Lời giải:

a. $E, F$ là trung điểm của $AB, AC$
$\Rightarrow EF$ là đường trung bình của tam giác $ABC$ ứng với cạnh $BC$

$\Rightarrow EF\parallel BC$

$\Rightarrow EFCB$ là hình thang

Mà $\widehat{B}=\widehat{C}$ (do $ABC$ cân tại $A$)

$\Rightarrow EFCB$ là hình thang cân.

b. Vì $EFCB$ là htc nên $EC=BF$ 

Vì $E,F$ là trung điểm $AB,AC$ và $AB=AC$ nên:

$EB=AB:2=AC:2=FC$

Xét tam giác $EBC$ và $FCB$ có:

$EB=FC$

$BC$ chung

$EC=FB$ (cmt) 

$\Rightarrow \triangle EBC=\triangle FCB$ (c.c.c)

$\Rightarrow \widehat{ECB}=\widehat{FBC}$ 

Hay $\widehat{OCB}=\widehat{OBC}$

$\Rightarrow OBC$ là tam giác cân.

c. Xét tam giác $AOB$ và $AOC$ có:

$AO$ chung

$AB=AC$

$OB=OC$ (do tam giác $OBC$ cân tại $O$)

$\Rightarrow \triangle AOB=\triangle AOC$ (c.c.c)

$\Rightarrow \widehat{BAO}=\widehat{CAO}$ 

$\Rightarrow AO$ là phân giác $\widehat{A} (1)$

Mặt khác: Tam giác $ABC$ cân tại $A$ nên trung tuyến AM đồng thời là phân giác $AM$ của góc $\widehat{A}(2)$

Từ $(1), (2)\Rightarrow A,O,M$ thẳng hàng.

 

AH
Akai Haruma
Giáo viên
12 tháng 8 2023

Hình vẽ:

12 tháng 8 2023

\(2a^2+8b^2-8ab\)

\(=2\left(a^2-4ab+4b^2\right)\)

\(=2\left(a-2b\right)^2\)

12 tháng 8 2023

cám ơn nhaaaaa!!!!

12 tháng 8 2023

a2 + b2 + c2 = ab + bc + ca 

<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = 0

<=> (a2 - 2ab + b2) + (b2 - 2ca + c2) + (c2 - 2ac + a2) = 0

<=> (a - b)2 + (b - c)2 + (c - a)2 = 0

Dễ thấy   (a - b)2 + (b - c)2 + (c - a)2 \(\ge0\forall a,b,c\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a-b=0\\b-c=0\\a-c=0\end{matrix}\right.\Leftrightarrow a=b=c\)

Mà a + b + c = 2025 

nên \(a=b=c=675\)

12 tháng 8 2023

a2 + b2 + c2 = ab + bc + ca 

<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = 0

<=> (a2 - 2ab + b2) + (b2 - 2ca + c2) + (c2 - 2ac + a2) = 0

<=> (a - b)2 + (b - c)2 + (c - a)2 = 0

Dễ thấy   (a - b)2 + (b - c)2 + (c - a)2 ≥0∀�,�,�

Dấu "=" xảy ra khi {�−�=0�−�=0�−�=0⇔�=�=�

Mà a + b + c = 2025 

nên �=�=�=675

loading...

2
12 tháng 8 2023

loading...  

a) Do I là trung điểm AB (gt)

K là trung điểm AC (gt)

⇒ IK là đường trung bình của ∆ABC

⇒ IK // BC

Do ∆ABC cân tại A

⇒ ∠ABC = ∠ACB (hai góc ở đáy)

Tứ giác IKCB có:

IK // BC (cmt)

⇒ IKCB là hình thang

Mà ∠B = ∠C (cmt)

⇒ IKCB là hình thang cân

b) Bổ sung thêm đề ở chỗ KQ // AB (Q ∈ BC)

Do KQ // AB (gt)

⇒ KQ // BI

Lại có IK // BC (cmt)

⇒ IK // BQ

Tứ giác IKQB có:

IK // BQ (cmt)

KQ // BI (cmt)

⇒ IKQB là hình bình hành

c) Do IK là đường trung bình của ∆ABC (cmt)

⇒ IK = BC/2

Mà IKQB là hình bình hành (cmt)

⇒ BQ = IK = BC/2

⇒ Q là trung điểm của BC

12 tháng 8 2023

cám ơn bạn nhaaaa!!

 

 

12 tháng 8 2023

13x2 + 9y2 - 30x + 12xy + 25 = 0

<=> (9y2 + 12xy + 4y2) + (9x2 - 30x + 25) = 0

<=> (3y + 2x)2 + (3x - 5)2 = 0

Dễ thấy \(\left(3y+2x\right)^2\ge0;\left(3x-5\right)^2\ge0\forall x,y\)

nên \(\left(3y+2x\right)^2+\left(3x-5\right)^2\ge0\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}3y+2x=0\\3x-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{10}{9}\\x=\dfrac{5}{3}\end{matrix}\right.\)

12 tháng 8 2023

Bạn xem lại đề