Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đây là toán nâng cao chuyên đề giải phương trình nghiệm nguyên, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng lập bảng như sau:
(\(x-5\))(\(x+y-2\)) = 31
31 = 31 ⇒ Ư(31) = {-31; -1; 1; 31}
Lập bảng ta có:
\(x-5\) | -31 | -1 | 1 | 31 |
\(x\) | -26 | 4 | 6 | 36 |
\(x+y-2\) | -1 | -31 | 31 | 1 |
y | 27 | -33 | 27 | -33 |
Theo bảng trên ta có:
(\(x;y\)) = (-26; 27); (4; -33); (6; 27); (36; - 33)
Vậy (\(x;y\)) = (-26; 27); (4; -33); (6; 27); (36; - 33)
Chứng tỏ nó bằng 1?!
Bg
Ta có: ƯCLN (3n + 2; 2n + 1) (n \(\inℕ\))
Gọi ƯCLN (3n + 2; 2n + 1) là d (d \(\inℕ^∗\))
Theo đề bài: 3n + 2 \(⋮\)d và 2n + 1 \(⋮\)d
=> 2.(3n + 2) - 3.(2n + 1) \(⋮\)d
=> 6n + 4 - (6n + 3) \(⋮\)d
=> 6n + 4 - 6n - 3 \(⋮\)d
=> (6n - 6n) + (4 - 3) \(⋮\)d
=> 1 \(⋮\)d
=> d = 1
Vậy ƯCLN (3n + 2; 2n + 1) = 1
a; (\(x+1\))(\(x^2\) - 4) = 0
\(\left[{}\begin{matrix}x+1=0\\x^2-4=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-1\\x^{ }=-2\\x=2\end{matrix}\right.\)
Vậy \(x\in\) {-1; -2; 2}
b; (\(x\) - 2).(\(x^2\) + 1) = 0
Vì \(x^2\) ≥ 0 ∀ \(x\); \(x\)2 + 1 ≥ 1 > 0 ∀ \(x\)
⇒ \(x-2\) = 0 ⇒ \(x\) = 2
Vậy \(x=2\)
c; 13.(\(x-5\)) = - 169
\(x-5\) = 169 : 13
\(x-5\) = -13
\(x=-13+5\)
Vậy \(x=-8\);
d; \(x.\left(x-2\right)\) = 0
\(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy \(x\in\) {0; 2}
ta có 280=23.5.7
số ước của 280 là
(3+1).(1+1).(1+1)=16 (ước )
vậy 280 có 16 ước
2:
a: \(-3\in Z\)
b: \(0\in Z\)
c: \(4\in Z\)
d: \(-2\notin N\)
6: 3<5; -1>-3; -5<2; 5>-3
4:
a: Vì A nằm ở điểm -2 và O nằm ở điểm 0 nên khoảng cách từ điểm O đến điểm A là:
|-2-0|=|-2|=2
b: Các điểm cách O một khoảng bằng 5 đơn vị trên trục số là các điểm ở vị trí số -5 và số 5
Số số hạng của P:
\(90-1+1=90\) (số hạng)
Do \(90⋮3\) nên ta có thể nhóm các số hạng của P thành từng nhóm mà mỗi nhóm có 3 số hạng như sau:
\(P=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{88}+3^{89}+3^{90}\right)\)
\(=3.\left(1+3+3^2\right)+3^4.\left(1+3+3^2\right)+...+3^{88}.\left(1+3+3^2\right)\)
\(=3.13+3^4.13+...+3^{88}.13\)
\(=13.\left(3+3^4+...+3^{88}\right)⋮13\)
Vậy \(P⋮13\)