K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2019

Ta có\(\left(x+\sqrt{x^2+2013}\right)\left(\sqrt{x^2+2013}-x\right)=x^2+2013-x^2=2013\)

Mà \(\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)=2013\)

\(\Rightarrow\sqrt{x^2+2013}-x=y+\sqrt{y^2+2013}\)(1)

Tương tự \(x+\sqrt{x^2+2013}=\sqrt{y^2+2013}-y\)(2)

Lấy (1) - (2) ta được -2x = 2y

                          <=> 2x + 2y = 0

                          <=> P = x + y = 0

18 tháng 6 2019

\(2x^3-x^2+\sqrt[3]{2x^3-3x+1}=3x+1+\sqrt[3]{x^2+2}.\)

\(\Leftrightarrow\left(2x^3-3x+1\right)-\left(x^2+2\right)+\sqrt[3]{2x^2-3x+1}-\sqrt[3]{x^2+2}=0\)(*)

Đặt \(\sqrt[3]{2x^3-3x+1}=a\Rightarrow2x^3-3x+1=a^3\)\(\sqrt[3]{x^2+2}=b\Rightarrow b^3=x^2+2\)

Khi đó: (*) \(\Leftrightarrow a^3-b^3+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)

\(\Rightarrow a-b=0\)( Vì: \(a^2+ab+b^2+1=\left(a+\frac{b}{2}\right)^2+\frac{3}{4}b^2+1>0\))

\(\Leftrightarrow a=b\)hay \(\sqrt[3]{2x^3-3x+1}=\sqrt[3]{x^2+2}\)

\(\Leftrightarrow2x^3-3x+1=x^2+2\Leftrightarrow\left(2x^3+x^2\right)-\left(2x^2+x\right)-\left(2x+1\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(x^2-x-1\right)=0\Leftrightarrow\orbr{\begin{cases}2x+1=0\left(1\right)\\x^2-x-1=0\left(2\right)\end{cases}}\)

Giải (1)ta được \(x=-\frac{1}{2}\)

Giải (2) ta có: \(x^2-x-1=0\Leftrightarrow\left(x-\frac{1}{2}\right)^2=\frac{5}{4}\Leftrightarrow\orbr{\begin{cases}x-\frac{1}{2}=\frac{\sqrt{5}}{2}\\x-\frac{1}{2}=-\frac{\sqrt{5}}{2}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{\sqrt{5}+1}{2}\\x=\frac{-\sqrt{5}+1}{2}\end{cases}}\)

Vậy tập nghiệm của phương trình đã cho là: \(S=\left\{-\frac{1}{2};\frac{\sqrt{5}+1}{2};\frac{-\sqrt{5}+1}{2}\right\}.\)

18 tháng 6 2019

\(\sqrt{2x+5}+\sqrt{x-1}=\) \(8\) \(\left(đkxđ:x\ge1\right)\)

<=> \(\sqrt{2x+5}-5+\sqrt{x-1}-3=0\)

<=> \(\frac{2x+5-25}{\sqrt{2x+5}+5}+\frac{x-1-9}{\sqrt{x-1}+3}=0\)

<=> \(\frac{2\left(x-10\right)}{\sqrt{2x+5}+5}+\frac{x-10}{\sqrt{x-1}+3}=0\)

<=> \(\left(x-10\right)\left(\frac{2}{\sqrt{2x+5}+5}+\frac{1}{\sqrt{x-1}+3}\right)=0\)

<=> \(x-10=0\) \(vì\) \(\frac{2}{\sqrt{2x+5}+5}+\frac{1}{\sqrt{x-1}+3}>0\left(theođkxđ\right)\)

<=> \(x=10\left(tm\right)\)

chúc bn học tốt

18 tháng 6 2019

ĐKXĐ: \(x\ge1\), Đặt \(\sqrt{2x+5}=a>0,\sqrt{x-1}=b\ge0\)

\(\Rightarrow\hept{\begin{cases}a^2=2x+5\\b^2=x-1\end{cases}\Rightarrow}a^2-2b^2=7\)(*)

Mặt khác từ phương trình đã cho ta có: \(a+b=8\Leftrightarrow a=8-b\), Khi đó thế vào (*) ta được:

\(\left(8-b\right)^2-2b^2=7\Leftrightarrow64-16b+b^2-2b^2=7\)

\(\Leftrightarrow b^2+16b-57=0\Leftrightarrow\left(b-3\right)\left(b+19\right)=0\)

Mà \(b\ge0\Rightarrow b-3=0\Leftrightarrow b=3\)

\(\Rightarrow\sqrt{x-1}=3\Leftrightarrow x-1=9\Leftrightarrow x=10\left(TMĐK\right)\)

Vậy phương trình đã cho có nghiệm duy nhất là x=10

18 tháng 6 2019

Nghệ An bao nhiêu trường cấp 3,bạn định thi trg nào để mk thử tra điểm đầu vào

ĐỪNG ĐĂNG 

                CÂU HỎI 

                              LINH TINH 

                                             LÊN DIỄN ĐÀN 

Bị trừ điểm dấy !!! Hok tốt nha 

\(a,PT\Leftrightarrow\sqrt{x-1-2\sqrt{x-1}+1}=3\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}=3\)

\(\Leftrightarrow\sqrt{x-1}=4\Leftrightarrow x-1=16\Leftrightarrow x=17\)

Vậy............................................

\(b,PT\Leftrightarrow\sqrt{\left(x^2-1\right)^2}=x-1\)

\(\Leftrightarrow x^2-1=x-1\Leftrightarrow x^2=x\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

Vậy...............................................

18 tháng 6 2019

\(A=5-\sqrt{3-x^2+2x}\)

\(=5-\sqrt{-\left(x^2-2x-3\right)}\)

\(=5-\sqrt{-\left(x^2-2x+1-4\right)}\)

\(=5-\sqrt{-\left(x-1\right)^2+4}\)

\(A_{min}\Leftrightarrow\sqrt{-\left(x-1\right)^2+4}\)lớn nhất

Mà \(\left(x-1\right)^2\ge0\)\(\Rightarrow-\left(x-1\right)^2\le0\)

\(\Rightarrow-\left(x-1\right)^2=0\Leftrightarrow\left(x-1\right)=0\Rightarrow x=1\)

\(\Rightarrow A=5-\sqrt{4}=5-2=3\)

Vậy \(A_{min}=3\Leftrightarrow x=1\)

18 tháng 6 2019

\(ĐKXĐ:3-x^2+2x\ge0\)

Ta co \(A=5-\sqrt{3-x^2+2x}=5-\sqrt{4-\left(x-1\right)^2}\ge5-\sqrt{4}=3\)

Dau "=" tai x = 1 (Tm ĐKXĐ)

Vay...

18 tháng 6 2019

a) \(ĐKXĐ:x\le3\)

\(\sqrt{\left(x-3\right)^2}=3-x\)

\(\Leftrightarrow3-x=3-x\)(luôn đúng)

Vậy phương trình thỏa mãn với mọi x thỏa mãn ĐKXĐ.

b)\(ĐKXĐ:x\le\frac{5}{2}\)

 \(\sqrt{25-20x+4x^2}+2x=5\)

\(\Leftrightarrow\sqrt{\left(2x-5\right)^2}=5-2x\)

\(\Leftrightarrow5-2x=5-2x\)(luôn đúng)

Vậy phương trình thỏa mãn với mọi x t/m ĐKXĐ.

18 tháng 6 2019

Bác tiến sĩ k e sai thì giải thích rõ để e rút kinh nghiệm ạ

ko mất tính tổng quát ta g/s x<y<z<t

=>1/x>1/y>1/z>1/t

=>4.1/x>1/x+1/y+1/z+1/t=1

=> 4/x>1 =>x<4 mà x nguyên dương =>x=1 hoặc 2;3

thử từng th ra rồi làm tương tự

18 tháng 6 2019

Cách này lm ra có quá nhiều TH mak còn cách khác ko v ???