Cho a, b, c là các số thực đôi một phân biệt sao cho a 3 + b 3 + c 3 = 3abc. Tính giá trị biểu thức P = a + b/c . b + c/a . c + a/b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Số học sinh trung bình là \(1200\cdot\dfrac{5}{8}=750\left(bạn\right)\)
Số học sinh khá là \(1200\cdot\dfrac{1}{3}=400\left(bạn\right)\)
Tổng số học sinh giỏi và yếu là 1200-750-400=50(bạn)
Số học sinh giỏi là 50:2=25(bạn)
Số học sinh yếu là 50-25=25(bạn)
b: Tỉ số phần trăm giữa số học sinh yếu và tổng số học sinh là:
\(\dfrac{25}{1200}=\dfrac{1}{48}\simeq2,08\%\)
`a^3 + b^3 + c^3 = 3abc`
`=> a^3 + b^3 + c^3 - 3abc = 0`
`=> (a+b)^3 - 3ab(a+b) + c^3 - 3abc = 0`
`=> ((a+b)^3 + c^3) - (3ab(a+b) + 3abc) = 0`
`=> (a+b+c) ((a+b)^2 - (a+b)c + c^2) - 3ab(a+b+c) = 0`
`=> (a+b+c)(a^2 + 2ab + b^2 - ac - bc + c^2) - 3ab(a+b+c) = 0`
`=> (a+b+c)(a^2 + 2ab + b^2 - ac - bc + c^2 - 3ab) = 0`
`=> (a+b+c)(a^2 - ab + b^2 - ac - bc + c^2) = 0`
Trường hợp 1:
`a+b+c = 0 (đpcm)`
Trường hợp 2:
`a^2 - ab + b^2 + ac + bc + c^2 = 0`
`<=> 2a^2 - 2ab + 2b^2 - 2bc +2c^2 - 2ca = 0`
`<=> a^2 - 2ab + b^2 + b^2 - 2bc +c^2 + c^2 - 2ac + a^2 = 0`
`<=> (a-b)^2 + (b-c)^2 + (c-a)^2 = 0`
Do `{((a-b)^2 >=0),((b-c)^2 >=0),((c-a)^2 >=0):}`
`=> (a-b)^2 + (b-c)^2 + (c-a)^2 >= 0`
Dấu = có khi:
`{(a=b),(b=c),(c=a):}`
Hay `a=b=c (đpcm)`
Ta có :a^3+b^3+c^3=3abc⇒a^3+b^3+c^3-3abc=0
⇒(a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0
TH1: a+b+c=0
TH2:a^2+b^2+c^2-ab-ac-bc=0
⇒2a^2+2b^2+2c^2-2ab-2bc-2ac=0
(a-b)^2+(b-c)^2+(c-a)^2=0
⇒a=b=c
\(2x^3-1=15\)
=>\(2x^3=1+15=16\)
=>\(x^3=8\)
=>x=2
\(\dfrac{x+1}{6}=\dfrac{y-2}{3}=\dfrac{z+1}{4}\)
=>\(\dfrac{y-2}{3}=\dfrac{z+1}{4}=\dfrac{2+1}{6}=\dfrac{3}{6}=\dfrac{1}{2}\)
=>\(\left\{{}\begin{matrix}y-2=\dfrac{3}{2}\\z+1=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{7}{2}\\z=1\end{matrix}\right.\)
\(\left(a+1\right)^2-2a-2\)
\(=a^2+2a+1-2a-2=a^2-1< =0\)(Do \(a^2< =1\))
=>\(\left(a+1\right)^2< =2a+2\)
Vì a2 ≤ 1 ⇒ a2 + 1 ≤ 1 + 1 = 2
⇒ a2 + 1 + 2a ≤ 2 + 2a ⇒ (a + 1)2 ≤ 2(đpcm)
ĐỔi 1 giờ = 60 phút
60 phút gấp 15 phút số lần là:
`60 : 15 = 4` (lần)
Sau 1 giờ thì hồng anh chạy được số km là:
`2 xx 4 = 8 (km)`
Đáp số: `8km`
\(2^{x+3}-2^x=224\)
=>\(2^x\cdot8-2^x=224\)
=>\(7\cdot2^x=7\cdot32\)
=>\(2^x=32=2^5\)
=>x=5
2x+3 - 2x = 224
2x+3 - 2x = 28- 25
=> x+3 - x = 8 - 5
3 = 3
=> pt luôn bằng 3 với mọi x
Gọi chiều rộng ban đầu là x(m)
(Điều kiện: \(0< x< \dfrac{35}{2}\))
Chiều dài ban đầu là 35-x(m)
Chiều dài sau khi giảm đi 5m là 35-x-5=30-x(m)
Diện tích nhỏ hơn ban đầu là 75m2 nên ta có:
x(35-x)-x(30-x)=75
=>\(35x-x^2-30x+x^2=75\)
=>5x=75
=>x=15(nhận)
Vậy: Chiều rộng ban đầu là 15m
Chiều dài ban đầu là 35-15=20m
Diện tích ban đầu là \(15\cdot20=300\left(m^2\right)\)
Gọi chiều dài và chiều rộng của khu vườn hình chữ nhật lúc đầu lần lượt là `x` và `y (m)`
Điều kiện: `0 <x,y < 35`
Do Khu vườn hình chữ nhật có tổng chiều dài và chiều rộng là 35m
`=> x+y = 35 (1)`
Do nếu giảm chiều dài 5m và giữ nguyên chiều rộng thì diện tích vườn nhỏ hơn lúc đầu là `75m^2` nên
`xy - (x-5)y = 75`
`=> xy -xy +5y = 75`
`=> 5y = 75
`=> y = 15`
Khi đó: `x = 35 - 15 = 20` (Thỏa mãn)
Diện tích khu vườn ban đầu là:
`xy = 20 . 15 = 300 (m^2)`
Vậy diện tích khu vườn ban đầu là `300m^2`
Gọi hai số là a,b
Tỉ lệ giữa hai số ban đầu là 2/5 nên \(\dfrac{a}{b}=\dfrac{2}{5}\)
=>b=2,5a
Nếu thêm 12 đơn vị vào số thứ nhất và bớt 12 đơn vị ở số thứ hai thì hai số mới có tỉ lệ là \(\dfrac{4}{3}\) nên ta có:
\(\dfrac{a+12}{b-12}=\dfrac{4}{3}\)
=>\(\dfrac{a+12}{2,5a-12}=\dfrac{4}{3}\)
=>10a-48=3a+36
=>7a=84
=>a=12
=>b=2,5a=30
vậy: Hai số cần tìm là 12;30
a,b,c là các số thực đôi một phân biệt
=>\(a-b;b-c;a-c\) đều khác 0
\(a^3+b^3+c^3=3bac\)
=>\(\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
=>\(\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)
=>\(\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)
=>\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
=>\(\left(a+b+c\right)\left[2a^2+2b^2+2c^2-2ab-2ac-2bc\right]=0\)
=>\(\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]=0\)
=>\(\left[{}\begin{matrix}a+b+c=0\\\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\left(loại\right)\end{matrix}\right.\)
=>a+b+c=0
=>a+b=-c; a+c=-b; b+c=-a
\(P=\dfrac{a+b}{c}\cdot\dfrac{b+c}{a}\cdot\dfrac{c+a}{b}=\dfrac{-c}{c}\cdot\dfrac{-a}{a}\cdot\dfrac{-b}{b}=-1\)