Mùa lá rụng ngoài vườn
Gió thổi từng cơn làm cây lay động
Như báo hiệu trời đang sắp chuyển đông
Làm lá vàng cứ nhẹ rơi rơi mãi
Chợt nhận ra mùa lá rụng ngoài vườn.
Gió xào xạc trên những ngọn cây cao
Làm lá rơi cứ như cơn mưa rào
Lấp đầy hết những khoảng không vô tận
Ngập tràn cả một khoảng rộng ngoài vườn.
Vườn thoảng hương làm đất trời ngây ngát
Gọi ta vào một thế giới nhỏ thôi
Mà bao chùm tất cả hương thơm nhất
Hương của cây và của lá nhẹ trôi.
Ta ngây ngất như đang ở cõi tiên
Mùa là rụng thật thơm mát dịu hiền
Đưa ta vào khoảng không chân trời mới
Và chỉ ta mới cảm nhận được thôi.
~Điền~
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c, Ap dung cong thuc sau
Dien h tam giac deu canh a = \(\frac{a^2\sqrt{3}}{4}\) (bn tu chung minh )
sau do tinh canh tam giac ABC theo R se duoc \(AB=\frac{\sqrt{3}}{2}R\) thay vao cong thuc tren la ra
d, ban tu ve hinh nha
Ta co tu giac CHMF,MHIB noi tiep
nen suy ra \(\widehat{CHF}=\widehat{CMF},\widehat{BHI}=\widehat{BMI}\) (1)
ma \(\widehat{MCF}=\widehat{MBI}\) (tu giac ABMC noi tiep)
=> \(\widehat{CMF}=\widehat{BMI}\) phu 2 goc bang nhau (2)
tu (1),(2) => \(\widehat{CHF}=\widehat{BHI}\) => H,I,F thang hang
Câu 3 :
\(ĐKXĐ:x>0\)
\(P=\left(\frac{2}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+2}\right):\frac{2\sqrt{x}}{x+2\sqrt{x}}\)
\(\Leftrightarrow P=\frac{2\sqrt{x}+4+x}{x+2\sqrt{x}}\cdot\frac{x+2\sqrt{x}}{2\sqrt{x}}\)
\(\Leftrightarrow P=\frac{2\sqrt{x}+4+x}{2\sqrt{x}}\)
b) Để P = 3
\(\Leftrightarrow\frac{2\sqrt{x}+4+x}{x+2\sqrt{x}}=3\)
\(\Leftrightarrow2\sqrt{x}+4+x=6\sqrt{x}\)
\(\Leftrightarrow x-4\sqrt{x}+4=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)^2=0\)
\(\Leftrightarrow\sqrt{x}-2=0\)
\(\Leftrightarrow\sqrt{x}=2\)
\(\Leftrightarrow x=4\)(tm)
Vậy để \(P=3\Leftrightarrow x=4\)
Câu 1 : Hình như sai đề !! Mik sửa :
\(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)
\(A=\left(\frac{x}{x\sqrt{x}-4\sqrt{x}}-\frac{6}{3\sqrt{x}-6}+\frac{1}{\sqrt{x}+2}\right):\left(\sqrt{x}-2+\frac{10-x}{\sqrt{x}+2}\right)\)
\(\Leftrightarrow A=\left(\frac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{2}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\right):\left(\frac{x-4+10-x}{\sqrt{x}+2}\right)\)
\(\Leftrightarrow A=\frac{\sqrt{x}-2\sqrt{x}-4+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}:\frac{6}{\sqrt{x}+2}\)
\(\Leftrightarrow A=\frac{-6\left(\sqrt{x}+2\right)}{6\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(\Leftrightarrow A=-\frac{1}{\sqrt{x}-2}\)
b) Để A < 2
\(\Leftrightarrow-\frac{1}{\sqrt{x}-2}< 2\)
\(\Leftrightarrow-1< 2\sqrt{x}-4\)
\(\Leftrightarrow2\sqrt{x}>3\)
\(\Leftrightarrow\sqrt{x}>1,5\)
\(\Leftrightarrow x>2,25\)
Vậy để \(A< 2\Leftrightarrow x>2,25\)
a, Khi \(m=-1\Rightarrow y=-2x+2\)
b, Ta có: \(d ∩ Ox\) \(=A\left(-\frac{2}{m-1},0\right),\) \(d∩Oy=B(0,2)\)
Để \(\Delta OAB\) vuông cân:
\(\Rightarrow OA=OB\Rightarrow|-\frac{2}{m-1}|=|2|\)
\(\Rightarrow|\frac{2}{m-1}|=2\)
\(\Rightarrow|m-1|=1\)
\(\Rightarrow m-1=1\)
\(\Rightarrow m=2\)
Hoặc: \(m-1=-1\)
\(\Rightarrow m=0\)
<=> x-3=\(\sqrt{4x+9}\)
<=>\(\left(x-3\right)^2=\sqrt{4x+9}^2\) (ĐK x>=3)
<=>x^2 - 6x +9 = 4x + 9
<=> x^2 -10x =0
<=> x(x-10)=0
<=> x=0( ko tm ĐK) hoăc x=10 (tm)
Vây x=10
Hay~~~
hay lắm nếu ai chọn hay hãy giơ tay lên nhé