K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2020

x- 4x3 - 8x2 + 8x

= x ( x3 - 4x2 - 8x + 8 )

= x [ ( x3 - 6x2 + 4x ) + ( 2x2 - 12x + 8 ) ]

= x [ x ( x2 - 6x + 4 ) + 2 ( x2 - 6x + 4 ) ]

= x ( x + 2 ) ( x2 - 6x + 4 )

21 tháng 10 2020

A B C D P Q N M

Đường trung bình của hình thang là NM

P, Q là giao của MN với BD và AC

\(\frac{AB}{CD}=\frac{2}{3}\)

\(EF=\frac{AB+CD}{2}\Rightarrow AB+CD=2.EF=2.5=10cm.\)

\(\Rightarrow AB=10:\left(2+3\right).2=4cm\Rightarrow CD=10-4=6cm\)

Xét tg ABD có 

AN=DN

NP//AB

=> P là trung điểm của BD (trong 1 tg đường thẳng // với đáy và đi qua trung điểm 1 cạnh bên thì đi qua trung điểm cạnh bên còn lại)

=> NP là đường trung bình của tg ABD \(\Rightarrow NP=\frac{AB}{2}=\frac{4}{2}=2cm\)

Chứng minh tương tự khi xét tg ABC ta cũng c/m được Q là trung điểm của AC

Xét tg ADC có 

AN=DN và AQ=CQ => NQ là đường trung bình của tg ADC \(\Rightarrow NQ=\frac{CD}{2}=\frac{6}{2}=3cm\)

Ta có PQ=NQ-NP=3-2=1 cm

19 tháng 10 2020

bạn ơi sai đề bài à

4xy+2x^2+6y^2=32

2.(2xy+x^2+y^2)=32

(x+y)^2=32:2

(x+y)^2=16

(x+y)^2=8^2

x+y=8

<=>.....

đoạn dưới bn tự suy ra nhe. mik lười =>

19 tháng 10 2020

4xy + 2x + 6y = 32

⇔ 4xy + 2x + 6y - 32 = 0

⇔ 2x( 2y + 1 ) + 3( 2y + 1 ) - 35 = 0

⇔ ( 2y + 1 )( 2x + 3 ) = 35

Ta có bảng sau :

2x+31-15-57-735-35
2y+135-357-75-51-1
x-1-21-42-516-19
y17-183-42-30-1

Vậy ...

19 tháng 10 2020

Vẽ được hình thôi nhá '-' thông kảm

A B C D I O K F E M N

19 tháng 10 2020

Thay x = 101; y = 100; z = 98 vào biểu thức P, ta có:

P = 101. 100 + 100. 98 + 98. 101 - 100 - 98 - 2

   = 10100 + 9800 + 9898 - 100 - 100

   = 29798 - 200

   = 29598

Vậy với x = 101; y = 100; z = 98 thì biểu thức P = 29598

19 tháng 10 2020

Gọi K là hình chiếu vuông góc của E lên MD, suy ra góc MEK = 90 - BAC.

Ta có 2 tam giác đồng dạng EDK và MAE

suy ra MA/DE = ME/EK = 1/sin(A)

suy ra DE nhỏ nhất khi MA nhỏ nhất

suy ra M là chân đường cao hạ từ A

18 tháng 10 2020

Sử dụng delta thôi!

Xét \(4x^2+\sqrt{2}x-\sqrt{2}=0\) có \(4\cdot\left(-\sqrt{2}\right)=-4\sqrt{2}< 0\) nên PT có 2 nghiệm phân biệt

Mà a là nghiệm nguyên dương của PT nên ta có: \(4a^2+\sqrt{2}a-\sqrt{2}=0\)

Vì a > 0 \(\Rightarrow4a^2=-\sqrt{2}a+\sqrt{2}\)

\(\Rightarrow a^2=\frac{\sqrt{2}-\sqrt{2}a}{4}=\frac{\left(1-a\right)\sqrt{2}}{4}=\frac{1-a}{2\sqrt{2}}\)

\(\Rightarrow a^4=\left(\frac{1-a}{2\sqrt{2}}\right)^2=\frac{1-2a+a^2}{8}\)

Thay vào ta được:

\(B=\frac{a+1}{\sqrt{a^4+a+1}-a^2}=\frac{\left(a+1\right)\left(\sqrt{a^4+a+1}+a^2\right)}{\left(\sqrt{a^4+a+1}\right)^2-a^4}\)

\(=\frac{\left(a+1\right)\left(\sqrt{a^4+a+1}+a^2\right)}{a^4+a+1-a^4}=\frac{\left(a+1\right)\left(\sqrt{a^4+a+1}+a^2\right)}{a+1}=\sqrt{a^4+a+1}+a^2\)

\(=\sqrt{\frac{1-2a+a^2}{8}+a+1}+\frac{1-a}{2\sqrt{2}}=\sqrt{\frac{a^2+6a+9}{8}}+\frac{1-a}{2\sqrt{2}}\)

\(=\frac{a+3}{2\sqrt{2}}+\frac{1-a}{2\sqrt{2}}=\frac{4}{2\sqrt{2}}=\sqrt{2}\)

Vậy \(B=\sqrt{2}\)

18 tháng 10 2020

Ta có : \(ax^2+bx+c=0\)có hai nghiệm trái dấu khi và chỉ khi \(\frac{c}{a}< 0\)

Áp dụng vào phương trình \(x^2+x-1=0\)có : \(-\frac{1}{1}< 0\)

=> phương trình \(x^2+x-1=0\)có 2 nghiệm trái dấu ( điều phải chứng minh )

18 tháng 10 2020

Dùng công thức nghiệm tìm được hai nghiệm \(x_1=\frac{-1-\sqrt{5}}{2}< 0\)và \(x_2=\frac{-1+\sqrt{5}}{2}>0\)

Vậy phương trình  x2 + x - 1 = 0 có 2 nghiệm trái dấu

\(D=\sqrt{x_1^8+10x_1+13}+x_1=\left[\sqrt{x_1^8+10x_1+13}+\left(x_1-5\right)\right]+5\)\(=\frac{x_1^8+10x_1+13-x_1^2+10x_1-25}{\sqrt{x_1^8+10x_1+13}-\left(x_1-5\right)}+5\)\(=\frac{x_1^8-x_1^2+20x_1-12}{\sqrt{x_1^8+10x_1+13}-\left(x_1-5\right)}+5=\frac{\left(x_1^2+x_1-1\right)\left(x_1^6-x_1^5+2x_1^4-3x_1^3+5x_1^2-8x_1+12\right)}{\sqrt{x_1^8+10x_1+13}-\left(x_1-5\right)}+5=5\)(Do x1 là nghiệm của phương trình x2 + x - 1 = 0 nên \(x_1^2+x_1-1=0\))

18 tháng 10 2020

Ta có\(\frac{1}{x}+\frac{1}{y}=\frac{1}{3}\)(x;y > 0)

=> \(\frac{x+y}{xy}=\frac{1}{3}\)

=> 3(x + y) = xy

=> 3x + 3y = xy

=> xy - 3x - 3y = 0

=> x(y - 3) - 3y + 9 = 9

=> x(y - 3) - 3(y - 3) = 9

=> (x - 3)(y - 3) = 9

Vì x;y > 0

=> x - 3 > -3 ; y - 3 > -3 (1)

mà 9 = 1.9 = (-1).(-9) = 3.3 = (-3).(-3) (2)

Từ (1)(2) 

=> x - 3 = 1 ; y - 3 = 9 

=> x = 4 ; y = 12

hoặc x = 12 ; y = 4

Vậy các cặp (x ; y) thỏa mãn là (4;12);(12;4)

18 tháng 10 2020

Ta có \(\frac{1}{x}+\frac{1}{y}=\frac{1}{3}\)

\(\Leftrightarrow\frac{y}{xy}+\frac{x}{xy}=\frac{1}{3}\)

\(\Leftrightarrow\frac{x+y}{xy}=\frac{1}{3}\)

\(\Leftrightarrow3\left(x+y\right)=xy\)

\(\Leftrightarrow3x+3y-xy=0\)

\(\Leftrightarrow\left(x-3\right)\left(y-3\right)=9\)

\(\Leftrightarrow\left(x-3\right)\left(y-3\right)=9=3.3=\left(-3\right).\left(-3\right)=1.9=9.1=\left(-1\right)\left(-9\right)=\left(-9\right)\left(-1\right)\)

\(th1\hept{\begin{cases}x-3=3\Leftrightarrow x=6\\y-3=3\Leftrightarrow y=6\end{cases}}\left(tm\right)\)

\(th2\hept{\begin{cases}x-3=-3\Leftrightarrow x=0\\y-3=-3\Leftrightarrow y=0\end{cases}}\left(ktm\right)\)

\(th3\hept{\begin{cases}x-3=1\Leftrightarrow x=4\\y-3=9\Leftrightarrow y=12\end{cases}}\left(tm\right)\)

\(th4\hept{\begin{cases}x-3=9\Leftrightarrow x=12\\y-3=1\Leftrightarrow y=4\end{cases}}\left(tm\right)\)

thử các cặp còn lại rồi kl

18 tháng 10 2020

Ta có:

\(2^x\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)\) là tích 5 số tự nhiên nên chia hết cho 5 

Mà 2x không chia hết cho 5 nên

\(\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)⋮5\)

Mà 11879 không chia hết cho 5 nên y=0

=> \(\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)=11880=9.10.11.12\Rightarrow x=3\)

Vậy pt có nghiệm (x;y)=(3;0)