hứa sẽ tick cho nếu giúp mik câu này nữa
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt: \(\dfrac{1}{2x-y}=a;\dfrac{1}{x+y}=b\left(2x\ne y;x\ne-y\right)\)
Hpt trở thành:
\(\left\{{}\begin{matrix}3a-6b=1\\a-b=0\end{matrix}\right. \Leftrightarrow\left\{{}\begin{matrix}3a-6a=1\\a=b\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}-3a=1\\a=b\end{matrix}\right. \Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{3}\\b=a=-\dfrac{1}{3}\end{matrix}\right.\)
\(=>\left\{{}\begin{matrix}\dfrac{1}{2x-y}=\dfrac{1}{-3}\\\dfrac{1}{x+y}=\dfrac{1}{-3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-y=-3\\x+y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=-6\\x+y=-3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-6}{3}=-2\\-2+y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-3+2=-1\end{matrix}\right.\)
Xét 2 ΔABO và ΔADO ta có:
\(\widehat{BAO}=\widehat{DAO}\) (AD là phân giác của góc BAC)
\(OA\) chung
\(\widehat{AOB}=\widehat{AOD}\left(gt\right)\)
\(=>\Delta ABO=\Delta ADO\left(g.c.g\right)\)
\(=>\widehat{B}=\widehat{D_1}\) (hai góc tương ứng)
a) 575-(6x+70)=455
6x+70=575-455
6x+70=120
6x=120-70
6x=50
x=50:6
x=\(\dfrac{25}{3}\) \(\notinℕ\)
Vậy không có giá trị tự nhiên x thỏa mãn đề
b) 315+(125-x)=435
125-x=435-315
125-x=120
x=125-120
x=5 (nhận)
c) 3x+28=88
3x=88-28
3x=60
x=60:3
x=20
\(a.575-\left(6\cdot x+70\right)=455\\ =>6\cdot x+70=575-455\\ =>6\cdot x+70=120\\ =>6\cdot x=120-70\\ =>6\cdot x=50\\ =>x=\dfrac{50}{6}=\dfrac{25}{3}\left(L\right)\\ b.315+\left(125-x\right)=435\\ =>125-x=435-315=125\\ =>x=125-125=0\\ c.3\cdot x+28=88\\ =>3\cdot x=88-28\\ =>3\cdot x=60\\ =>x=\dfrac{60}{3}=20\\ x-105:21=15\\ =>x-5=15\\ =>x=15+5=20\\ e.\left(x-105\right):21=15\\ =>x-105=21\cdot15\\ =>x-105=315\\ =>x=315+105\\ =>x=420\)
Đặt: \(3x^2-5x-7=0\)
\(\Delta=\left(-5\right)^2-4\cdot3\cdot\left(-7\right)=109>0\)
\(x_1=\dfrac{-\left(-5\right)+\sqrt{109}}{2\cdot3}=\dfrac{5+\sqrt{109}}{6}\)
\(x_2=\dfrac{-\left(-5\right)-\sqrt{109}}{2\cdot3}=\dfrac{5-\sqrt{109}}{6}\)
=> \(3x^2-5x-7=\left(x-\dfrac{5+\sqrt{109}}{6}\right)\left(x-\dfrac{5-\sqrt{109}}{6}\right)\)
\(x^4+2x^2-3\\ =\left(x^4-x^2\right)+\left(3x^2-3\right)\\ =x^2\left(x^2-1\right)+3\left(x^2-1\right)\\ =\left(x^2-1\right)\left(x^2+3\right)\\ =\left(x-1\right)\left(x+1\right)\left(x^2+3\right)\)
\(x^4+2x^2-3\)
\(=x^4+3x^2-x^2-3\)
\(=x^2\left(x^2+3\right)-\left(x^2+3\right)=\left(x^2+3\right)\left(x^2-1\right)\)
\(=\left(x^2+3\right)\left(x-1\right)\left(x+1\right)\)
a/ Dựng \(AH\perp BC\left(H\in BC\right)\)
Xét tg vuông ACH có
\(\cos C=\dfrac{CH}{AC}=\dfrac{CH}{b}\Rightarrow CH=b\cos C\)
Xét tg vuông ABH có
\(\cos B=\dfrac{BH}{AB}=\dfrac{BH}{c}\Rightarrow BH=c\cos B\)
\(\Rightarrow CH+BH=BC=a=b\cos C+c\cos B\)
b/
Đặt \(\widehat{BAH}=\alpha;\widehat{CAH}=\beta\)
\(\Rightarrow\cos A=\cos\left(\alpha+\beta\right)=\cos\alpha\cos\beta-\sin\alpha\sin\beta=\)
\(=\dfrac{AH}{c}.\dfrac{AH}{b}-\dfrac{BH}{c}.\dfrac{CH}{b}=\dfrac{AH^2-BH.CH}{bc}=\)
\(=\dfrac{2AH^2-2BH.CH}{2bc}=\dfrac{c^2-BH^2+b^2-CH^2-2BH.CH}{2bc}=\)
\(=\dfrac{b^2+c^2-\left(BH+CH\right)^2}{2bc}=\dfrac{b^2+c^2-a^2}{2bc}\)
\(x^3-2x^2+5x-4\)
\(=x^3-x^2-x^2+x+4x-4\)
\(=x^2\left(x-1\right)-x\left(x-1\right)+4\left(x-1\right)=\left(x-1\right)\left(x^2-x+4\right)\)
\(2^2+3^2+...+2021^2\)
\(=\left(1^2+2^2+...+2021^2\right)-1\)
\(=\dfrac{2021\cdot\left(2021+1\right)\left(2\cdot2021+1\right)}{6}=1\)
\(=2753594310\)
ΔABC cân tại A
=>\(\widehat{BAC}=180^0-2\cdot\widehat{ABC}=100^0\)
AD là phân giác góc ngoài tại đỉnh A
=>\(\widehat{CAD}=\dfrac{180^0-\widehat{BAC}}{2}=40^0\)
=>\(\widehat{CAD}=\widehat{ACB}\left(=40^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên AD//BC