K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8

= 388

Độ dài của chim ruồi khổng lồ Nam Mỹ là:

\(5,5\cdot\left(4\dfrac{1}{8}\right)=5,5\cdot4,125=\dfrac{363}{16}\left(cm\right)\)

4
456
CTVHS
17 tháng 8

@NQH . Bạn k spam câu trl!

câu a mik làm đc rồi nhe CM c-g-c

a: Ta có: \(AB=\dfrac{BC}{2}\)

\(BE=EC=\dfrac{BC}{2}\)

Do đó: AB=BE=EC

Xét ΔBAD và ΔBED có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED

b: ΔBAD=ΔBED

=>\(\widehat{BAD}=\widehat{BED}\)

=>\(\widehat{BED}=90^0\)

=>DE\(\perp\)BC

c: Xét ΔDBC có

DE là đường cao

DE là đường trung tuyến

Do đó: ΔDBC cân tại D

=>DB=DC

d: ΔDBC cân tại D

=>\(\widehat{DBC}=\widehat{DCB}\)

mà \(\widehat{ABC}=2\cdot\widehat{DBC}\)(BD là phân giác của góc ABC)

nên \(\widehat{ABC}=2\cdot\widehat{ACB}\)

ΔABC vuông tại A

=>\(2\cdot\widehat{ACB}+\widehat{C}=90^0\)

=>\(3\cdot\widehat{C}=90^0\)

=>\(\widehat{C}=\dfrac{90^0}{3}=30^0\)

\(\widehat{B}=2\cdot30^0=60^0\)

16 tháng 8

Thể tích phần bể chứa nước ban đầu là:

\(80\cdot50\cdot35=140000\left(cm^3\right)\)

Thể tích phần bể chứa nước lúc này sau khi thêm hòn đá là:

\(140000+20000=160000\left(cm^3\right)\)

Mực nước trong bể lúc này cao là:

\(160000:80:50=40\left(cm\right)\)

 

16 tháng 8

Thể tích ban đầu: 80 x 50 x 35 = 140.000 cm3

Sau khi thêm hòn đá: 140.000+20.000 =  160.000 cm3

=> Chiều cao mực nước = 160.000 / (80x50) = 40 cm

16 tháng 8

loading...

ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\ne9\end{matrix}\right.\)

Để A là số nguyên thì \(\sqrt{x}+2⋮\sqrt{x}-3\)

=>\(\sqrt{x}-3+5⋮\sqrt{x}-3\)

=>\(5⋮\sqrt{x}-3\)

=>\(\sqrt{x}-3\in\left\{1;-1;5;-5\right\}\)

=>\(\sqrt{x}\in\left\{4;2;8\right\}\)

=>\(x\in\left\{16;4;64\right\}\)

Bài 5:

a: \(\left|-\dfrac{3}{5}+\dfrac{1}{2}\right|-\left(\dfrac{3}{4}-\dfrac{5}{8}\right)+\left|-\dfrac{3}{2}\right|\)

\(=\left|-\dfrac{6}{10}+\dfrac{5}{10}\right|-\dfrac{1}{8}+\dfrac{3}{2}\)

\(=\dfrac{1}{10}-\dfrac{1}{8}+\dfrac{3}{2}=\dfrac{4}{40}-\dfrac{5}{40}+\dfrac{60}{40}=\dfrac{59}{40}\)

b: \(\dfrac{2}{3}-\left|-\dfrac{7}{3}+\dfrac{3}{4}\right|-\left|-\dfrac{5}{2}+1\right|\)

\(=\dfrac{2}{3}-\left|-\dfrac{28}{12}+\dfrac{9}{12}\right|-\left|-\dfrac{5}{2}+\dfrac{2}{2}\right|\)

\(=\dfrac{2}{3}-\dfrac{19}{12}-\dfrac{3}{2}=\dfrac{8}{12}-\dfrac{19}{12}-\dfrac{18}{12}\)

\(=-\dfrac{29}{12}\)

c: \(\dfrac{1}{5}-\left(\dfrac{3}{10}-\dfrac{-3}{5}\right)-\left|\dfrac{1}{4}-\dfrac{2}{5}\right|\)

\(=\dfrac{1}{5}-\dfrac{3}{10}-\dfrac{3}{5}-\left|\dfrac{5}{20}-\dfrac{8}{20}\right|\)

\(=-\dfrac{7}{10}-\left|\dfrac{-3}{20}\right|=-\dfrac{7}{10}-\dfrac{3}{20}=-\dfrac{17}{20}\)

d: \(\left|-\dfrac{5}{2}+\dfrac{3}{4}-\dfrac{1}{3}\right|-\left(-\dfrac{3}{4}+\dfrac{-5}{3}\right)\)

\(=\left|-\dfrac{30}{12}+\dfrac{9}{12}-\dfrac{4}{12}\right|+\dfrac{3}{4}+\dfrac{5}{3}\)

\(=\dfrac{25}{12}+\dfrac{9}{12}+\dfrac{20}{12}=\dfrac{54}{12}=\dfrac{9}{2}\)

Bài 6:

a: \(\left|x+\dfrac{1}{2}\right|>=0\forall x;\left|y-\dfrac{3}{4}\right|>=0\forall y;\left|z-1\right|>=0\forall z\)

Do đó: \(\left|x+\dfrac{1}{2}\right|+\left|y-\dfrac{3}{4}\right|+\left|z-1\right|>=0\forall x,y,z\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x+\dfrac{1}{2}=0\\y-\dfrac{3}{4}=0\\z-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=\dfrac{3}{4}\\z=1\end{matrix}\right.\)

b: \(\left|x-\dfrac{3}{4}\right|>=0\forall x;\left|\dfrac{2}{5}-y\right|>=0\forall y;\left|x-y+z\right|>=0\forall x,y,z\)

Do đó: \(\left|x-\dfrac{3}{4}\right|+\left|\dfrac{2}{5}-y\right|+\left|x-y+z\right|>=0\forall x,y,z\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-\dfrac{3}{4}=0\\\dfrac{2}{5}-y=0\\x-y+z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{4}\\y=\dfrac{2}{5}\\z=-x+y=-\dfrac{3}{4}+\dfrac{2}{5}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{3}{4}\\y=\dfrac{2}{5}\\z=-\dfrac{7}{20}\end{matrix}\right.\)

c: \(\left|x-\dfrac{2}{3}\right|>=0\forall x;\left|x+y+\dfrac{3}{4}\right|>=0\forall x,y;\left|y-z-\dfrac{5}{6}\right|>=0\forall y,z\)

Do đó: \(\left|x-\dfrac{2}{3}\right|+\left|x+y+\dfrac{3}{4}\right|+\left|y-z-\dfrac{5}{6}\right|>=0\forall x,y,z\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-\dfrac{2}{3}=0\\x+y+\dfrac{3}{4}=0\\y-z-\dfrac{5}{6}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-x-\dfrac{3}{4}=-\dfrac{2}{3}-\dfrac{3}{4}\\z=y-\dfrac{5}{6}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-\dfrac{17}{12}\\z=-\dfrac{17}{12}-\dfrac{10}{12}=-\dfrac{27}{12}=-\dfrac{9}{4}\end{matrix}\right.\)

Ta có: AB//DC

=>\(\widehat{A_1}=\widehat{D_4}\)(hai góc so le trong)

=>\(\widehat{D_4}=110^0\)
Ta có: \(\widehat{D_1}=\widehat{D_4}\)(hai góc đối đỉnh)

mà \(\widehat{D_4}=110^0\)

nên \(\widehat{D_1}=110^0\)

Ta có: AB//DC

=>\(\widehat{C_3}=\widehat{B_2}\)(hai góc so le trong)

=>\(\widehat{B_2}=135^0\)

Ta có: \(\widehat{B_1}+\widehat{B_2}=180^0\)(hai góc kề bù)

=>\(\widehat{B_1}=180^0-135^0=45^0\)