\(\left\{{}\begin{matrix}8\sqrt{xy-2y}-8y+4=\left(x-y\right)^2\\2\sqrt{2y-y^2}\left(\sqrt{8-2x}-2\sqrt{2y}+1\right)=4y+5\sqrt{2-y}-10\sqrt{x-2}\end{matrix}\right.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\dfrac{x+3}{\sqrt{x}+1}\); \(x\) = 9 - 4\(\sqrt{2}\)
Thay \(x\) = 9 - 4\(\sqrt{2}\) vào biểu thức A = \(\dfrac{x+3}{\sqrt{x}+1}\) ta có:
A = \(\dfrac{9-4\sqrt{2}+3}{\sqrt{9-4\sqrt{2}}+1}\) = \(\dfrac{12-4\sqrt{2}}{\sqrt{8-4\sqrt{2}+1}+1}\)
A = \(\dfrac{12-4\sqrt{2}}{\sqrt{\left(2\sqrt{2}-1\right)^2}+1}\) = \(\dfrac{12-4\sqrt{2}}{2\sqrt{2}-1+1}\)
A = \(\dfrac{12-4\sqrt{2}}{2\sqrt{2}}\) = \(\dfrac{2\sqrt{2}\left(3\sqrt{2}-2\right)}{2\sqrt{2}}\)
A = 3\(\sqrt{2}\) - 2
gọi số thỏa mãn đề bài là \(x^2\) ( \(x\) \(\in\) N) Theo bài ra ta có:
236 ≤ \(x^2\) ≤ 335 ⇒ 15,3 \(\le\) \(x\) \(\le\) 18,3
⇒ \(x\) \(\in\) { 16; 17}
Vậy số chính phương có trong dãy số 236 đến 335 là:
162 và 172
Bạn nên có bài cụ thể thì mọi người sẽ hướng dẫn được. Tách thì cũng phải dựa vào điều kiện.
Gọi P là 1 giá trị của biểu thức trên.
Ta có \(P=\dfrac{ax+b}{x^2+1}\Leftrightarrow\left(x^2+1\right)P-\left(ax+b\right)=0\)
\(\Leftrightarrow Px^2-ax+P-b=0\left(1\right)\)
Vì giá trị nhỏ nhất và giá trị lớn nhất đều khác 0, nên \(P\ne0\)
Để P tồn tại thì phương trình (1) phải có nghiệm hay \(\Delta_{\left(1\right)}\ge0\)
\(\Leftrightarrow\left(-a\right)^2-4P\left(P-b\right)\ge0\Leftrightarrow4P^2-4Pb-a^2\le0\left(2\right)\)
Gọi \(P_1,P_2\left(P_1< P_2\right)\) là 2 nghiệm của phương trình \(4P^2-4Pb-a^2=0\left(3\right)\)
Khi đó phương trình (2) có nghiệm \(P_1\le P\le P_2\) nên P đạt Min tại giá trị \(P_1\), đạt Max tại giá trị \(P_2\).
Do đó, yêu cầu của bài toán chỉ thỏa mãn khi và chỉ khi phương trình (3) có 2 nghiệm -1 và 4, tức: \(\left\{{}\begin{matrix}4+4b-a^2=0\\64-16b-a^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=3\\a^2=16\end{matrix}\right.\) hay \(\left\{{}\begin{matrix}b=3\\a=\pm4\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}a=4\\b=3\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}a=-4\\b=3\end{matrix}\right.\)
b) Xét phương trình 2 có
(1-x2 )/(1+xy)2 - (x+y)2 - y2 =1
=>(1-x2)/1+2xy+x2y2-x2-2xy-y2 -y2=1
=>(1-x2) /(1-x2 )-y2(1-x2) -y2 =1
=>(1-x2)/(1-x2)(1-y2) -y2=1
=>1/(1-y2) -y2=1
=>1=(1-y2)2
=>1=1-2y2+y4
=>y4-2y2=0
=>y2(y2-2)=0
=>y=0
y2-2=0
=> y=+√2
=> y=-√2
Thay y vào phương trình 1 là ra x
à nhầm ... sửa lại dòng 6
=> 1/(1-y2) - y2=1
=> 1/(1-y2)=1+y2
=> 1=1-y4
=> y=0
=>x=3
=> x=-3
Lời giải:
Áp dụng BĐT Cauchy-Schwarz và AM-GM:
$M=\frac{b^2+c^2}{a^2}+a^2(\frac{1}{b^2}+\frac{1}{c^2})$
$\geq \frac{b^2+c^2}{a^2}+a^2.\frac{4}{b^2+c^2}$
$=(\frac{b^2+c^2}{a^2}+\frac{a^2}{b^2+c^2})+\frac{3a^2}{b^2+c^2}$
$\geq \sqrt{\frac{b^2+c^2}{a^2}.\frac{a^2}{b^2+c^2}}+\frac{3(b^2+c^2)}{b^2+c^2}$
$=2+3=5$
Vậy $M_{\min}=5$
Với mọi ta có:
+) Nếu thì (mâu thuẫn với (*))
+) Với không tồn tại thỏa mãn hệ phương trình.
+) Với không tồn tại thỏa mãn hệ phương trình.
+) Với
Khi đó ta có hai số là nghiệm của phương trình:
Vậy nghiệm của hệ phương trình đã cho là:
nếu đúng cho mình xin 1 tick nhé!!!!
Các điều kiện xác định hợp lại sẽ là \(\left\{{}\begin{matrix}2\le x\le4\\0\le y\le2\end{matrix}\right.\)
Ta có \(8\sqrt{xy-2y}-8y+4\) \(=8\sqrt{y\left(x-2\right)}-8y+4\) \(\le4\left(y+x-2\right)-8y+4\) (BĐT AM-GM) \(=4\left(x-y\right)-4\)
Do vậy, \(\left(x-y\right)^2=8\sqrt{xy-2y}-8y+4\le4\left(x-y\right)-4\) \(\Leftrightarrow\left(x-y\right)^2-4\left(x-y\right)+4\le0\) \(\Leftrightarrow\left(x-y-2\right)^2\le0\) \(\Leftrightarrow x-y-2=0\) \(\Leftrightarrow y=x-2\), điều này cũng thỏa mãn ĐTXR của BĐT \(8\sqrt{y\left(x-2\right)}=4\left(y+x-2\right)\). Do đó, pt đầu tiên của hệ \(\Leftrightarrow y=x-2\) hay \(x=y+2\)
Thay vào pt thứ 2 của hệ, ta có
\(2\sqrt{2y-y^2}\left(\sqrt{4-2y}-2\sqrt{2y}+1\right)=4y+5\sqrt{2-y}-10\sqrt{y}\)
\(\Leftrightarrow\left(4-2y\right)\sqrt{2y}-4y\sqrt{4-2y}+2\sqrt{y\left(2-y\right)}=4y+5\sqrt{2-y}-10\sqrt{y}\)
Mình mới làm được đến đây thôi. Mình phải đi ngủ rồi, thế nên mai mình suy nghĩ tiếp nhé.