1 kim tự tháp hình chóp tứ giác đều M.ABCD đáy hình vuông các bề mặt tam giác vuông chung đỉnh biết chiều cao kim tự tháp SO = 140 mét. Cạnh đáy BC dài 240 mét
Tính độ dại đường chéo cạnh đáy AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$ab+bc+ac=3abc\Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3$
Đặt $\frac{1}{a}=x, \frac{1}{b}=y; \frac{1}{c}=z$ thì bài toán trở thành:
Cho $x,y,z>0$ thỏa mãn $x+y+z=3$.
Tìm min $S=\sum \frac{x^3}{x^2+y^2}$
---------------------------
Có:
$S=\sum (x-\frac{xy^2}{x^2+y^2})=\sum x- \sum \frac{xy^2}{x^2+y^2}$
$=3-\sum \frac{xy^2}{x^2+y^2}$
$\geq 3-\sum \frac{xy^2}{2xy}=3-\sum \frac{y}{2}$ (áp dụng BĐT AM-GM)
$=3-\frac{3}{2}=\frac{3}{2}$
Vậy $S_{\min}=\frac{3}{2}$. Giá trị này đạt tại $x=y=z=1$ hay $a=b=c=1$
Gọi A là đỉnh hình chóp và BC là 1 cạnh đáy (BC = 2,2m) tạo thành tam giác ABC cân tại A, AH là đường cao kẻ từ A xuống BC (H thuộc BC và AH = 2,8m)
=> AH đồng thời là đường trung trực của BC
=> H là trung điểm BC => BH = BC/2 = 2,2/2 = 1,1 (m)
Xét tam giác ABH vuông tại H (AH vuông góc với BC)
=> AB = \(\sqrt{BH^2+AH^2}\) = \(\sqrt{1,1^2+2,8^2}\) = 6,5 (m)
Vậy độ dài cạnh bên khoảng 6,5 m
Lời giải:
$a(x+2)^2+b(x+3)^3=cx+5$
$\Leftrightarrow bx^3+x^2(a+9b)+x(4a+27b)+(4a+27b)=cx+5$
Để điều này xảy ra với mọi $x\in\mathbb{R}$ thì:
\(\left\{\begin{matrix} b=0\\ a+9b=0\\ 4a+27b=c\\ 4a+27b=5\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} b=0\\ a=0\\ c=0\\ 4a+27b=5\end{matrix}\right. \) (vô lý)
Do đó không tồn tại $a,b,c$ thỏa đề.
\(\left(x-2\right)\left(x-3\right)-2x\left(1-x\right)\)
\(=x^2-3x-2x+6-2x+2x^2\)
\(=x^2-5x+6-2x+2x^2\)
\(=3x^2-7x+6\)
_______________
\(\left(x+5\right)^2-\left(x+3\right)\left(x-2\right)\)
\(=\left(x^2+10x+25\right)-\left(x^2-2x+3x-6\right)\)
\(=x^2+10x+25-x^2-x+6\)
\(=9x+31\)
\(x^2\) - 3\(x\) - 1
= \(x^2\) - 2.\(\dfrac{3}{2}\)\(x\) + \(\dfrac{9}{4}\) - \(\dfrac{13}{4}\)
= (\(x\) - \(\dfrac{3}{2}\))2 - \(\dfrac{13}{4}\)
= (\(x\) - \(\dfrac{3}{2}\) - \(\dfrac{\sqrt{13}}{2}\)).(\(x\) - \(\dfrac{3}{2}\) + \(\dfrac{\sqrt{13}}{2}\))
= (\(x\) - \(\dfrac{3+\sqrt{13}}{2}\)).(\(x\) - \(\dfrac{3-\sqrt{13}}{2}\))
\(a,5x^3y-10x^2y^2\\=5x^2y(x-2y)\\b,x^4-y^4\\=(x^2)^2-(y^2)^2\\=(x^2-y^2)(x^2+y^2)\\=(x-y)(x+y)(x^2+y^2)\)
\(c,(x+5)^2-16\\=(x+5)^2-4^2\\=(x+5-4)(x+5+4)\\=(x+1)(x+9)\\d,7x(y-3)-14(3-y)\\=7x(y-3)+14(y-3)\\=(7x+14)(y-3)\\=7(x+2)(y-3)\\Toru\)