K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2020

giúp mình với

12 tháng 8 2020

các bạn giúp mình với ,mai mình đi học rồi

12 tháng 8 2020

B C A E D F H

Bài làm:

a) Δ EHB ~ Δ DHC (g.g) vì:

\(\widehat{EHB}=\widehat{DHC}\) (đối đỉnh)

\(\widehat{BEH}=\widehat{CDH}=90^0\)

=> đpcm

b) Theo phần a, 2 tam giác đồng dạng

=> \(\frac{HE}{HB}=\frac{HD}{HC}\)

Δ HED ~ Δ HBC (c.g.c) vì:

\(\frac{HE}{HB}=\frac{HD}{HC}\) (chứng minh trên)

\(\widehat{EHD}=\widehat{BHC}\) (đối đỉnh)

=> đpcm

c) Δ ABD ~ Δ ACE (g.g) vì:

\(\widehat{ADB}=\widehat{AEC}=90^0\)

\(\widehat{A}\) chung

=> \(\frac{AD}{AE}=\frac{AB}{AC}\)

Δ ADE ~ Δ ABC (c.g.c) vì:

\(\frac{AD}{AE}=\frac{AB}{AC}\) (chứng minh trên)

\(\widehat{A}\) chung

=> đpcm

d) Gọi F là giao của AH với BC

Δ BHF ~ Δ BCD (g.g) vì:

\(\widehat{BFH}=\widehat{BDC}=90^0\)

\(\widehat{B}\) chung

=> \(\frac{BF}{BH}=\frac{BD}{BC}\Rightarrow BD.BH=BF.BC\left(1\right)\)

Tương tự ta chứng minh được:

\(CH.CE=FC.BC\left(2\right)\)

Cộng vế (1) và (2) lại ta được:

\(BD.BH+CH.CE=\left(BF+FC\right)BC=BC.BC=BC^2\)

=> đpcm

12 tháng 8 2020

pt <=> \(\left(x-3\right)^2\left(x+3\right)^2-\left(x-3\right)^2=0\)

<=>  \(\left(x-3\right)^2\left(\left(x+3\right)^2-1\right)=0\)

<=>   \(\orbr{\begin{cases}\left(x-3\right)^2=0\\\left(x+3\right)^2-1=0\end{cases}}\)

<=>   \(\orbr{\begin{cases}x=3\\\left(x+3\right)^2=1\end{cases}}\)

<=>    x = 3 hoặc \(\orbr{\begin{cases}x+3=1\\x+3=-1\end{cases}}\)

<=>   x = 3 hoặc  \(\orbr{\begin{cases}x=-2\\x=-4\end{cases}}\)

VẬY \(x\in\left\{-2;-4;3\right\}\)

12 tháng 8 2020

Bài làm:

\(\left(x^2-9\right)^2-\left(x-3\right)^2=0\)

\(\Leftrightarrow\left[\left(x-3\right)\left(x+3\right)\right]^2-\left(x-3\right)^2=0\)

\(\Leftrightarrow\left(x-3\right)^2\left[\left(x+3\right)^2-1\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x-3\right)^2=0\\\left(x+3\right)^2-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\\left(x+3\right)^2=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\\left(x+3\right)^2=1\end{cases}}\)

Nếu \(\left(x+3\right)^2=1\Leftrightarrow\orbr{\begin{cases}x+3=1\\x+3=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2\\x=-4\end{cases}}\)

Vậy tập nghiệm của PT \(S=\left\{-4;-2;3\right\}\)

12 tháng 8 2020

B C M N E F D A

Bài làm:

a) Vì AM = AN và \(\widehat{MAN}=\widehat{BAC}=60^0\) (đối đỉnh)

=> Tam giác AMN đều

=> \(\widehat{MNA}=60^0=\widehat{ACB}\)

Mà 2 góc này ở vị trí so le trong

=> MN // BC

=> Tứ giác MNCB là hình thang

Lại có \(\hept{\begin{cases}AM=AN\\AB=AC\end{cases}\Rightarrow}AM+AB=AN+AC\)

\(\Rightarrow MB=NC\) 

Vì MB,NC là 2 đường chéo hình thang MNCB

=> MNCB là hình thang cân

b) Nối M với D, C với F

Vì D,F là trung điểm của AN,AB

=> MD,CF là 2 đường trung tuyến của tam giác AMN và ABC

Mà 2 tam giác này đều

=> \(\hept{\begin{cases}MD\perp NC\left(\perp NA\right)\\CF\perp BM\left(\perp AB\right)\end{cases}}\)

=> Tam giác CDM và tam giác CFM vuông tại D,F

Mà DE,FE là 2 đường trung tuyến ứng với cạnh huyền của 2 tam giác vuông nói trên

=> \(DE=FE=\frac{1}{2}MC\left(1\right)\)

Vì D,F là trung điểm của AN,AB

=> DF là đường trung bình của tam giác ANB

=> \(DF=\frac{1}{2}NB\left(2\right)\)

Mà NB = MC ( MNCB là hình thang cân ) nên kết hợp với (1) và (2)

=> \(DF=FE=ED\)

=> Tam giác DEF đều

12 tháng 8 2020

Nếu đây là nhân đơn thức với đa thức thì...

\(\left(3x^3y-\frac{1}{2}x^2+\frac{1}{5}xy\right).6xy^3\)

\(=3x^3y.6xy^3-\frac{1}{2}x^2.6xy^3+\frac{1}{5}xy.6xy^3\)

\(=18x^4y^4-3x^3y^3+\frac{6}{5}x^2y^4\)

(3x^3y-1/2x^2+1/5xy).6xy^3

3x^3y.6xy^3-1/2x^2.6xy^3+1/5xy.6xy^3

18x^4y^4-3x^3y^3+6/5x^2y^4

12 tháng 8 2020

a) A = 5( x + 3 )( x - 3 ) + ( 2x + 3 )2 + ( x - 6 )2

A = 5( x2 - 9 ) + 4x2 + 12x + 9 + x2 - 12x + 36

A = 5x2 - 45 + 4x2 + 12x + 9 + x2 - 12x + 36

A = 10x2 

Thế x = -1/5 vào A ta được :

A = 10.(-1/5)2 = 10.1/25 = 2/5

Vậy A = 2/5 khi x = -1/5

b) x + y = 15 => y = 15 - x

xy = -100 <=> x( 15 - x ) = -100

                <=> -x2 + 15x + 100 = 0

                <=> -( x2 - 15x - 100 ) = 0

                <=> x2 - 15x - 100 = 0

                <=> x2 + 5x - 20x - 100 = 0

                <=> x( x + 5 ) - 20( x + 5 ) = 0

                <=> ( x - 20 )( x + 5 ) = 0

                <=> x = 20 hoặc x = -5

Với x = 20 => 20 + y = 15 => y = -5

Thế vào B ta được : B = 202 + (-5)2 = 425

Với x = -5 => -5 + y = 15 => y = 20

Thế vào B ta được : B = (-5)2 + 202 = 425

Vậy B = 425 với ( x ; y ) = ( 20 ; -5 ) hoặc ( x ; y ) = ( -5 ; 20 )

12 tháng 8 2020

b) Ta có x + y = 15

=> (x + y)2 = 225

=> x2 + y2 + 2xy = 225

=> x2 + y2 + 2.(-100) = 225

=> x2 + y2 = 25

=> B = x2 + y2 = 25

a) A = 5(x + 3)(x - 3) + (2x + 3)2 + (x - 6)2

= 5x2 - 49 + 4x2 + 12x + 9 + x2 - 12x + 36

= 10x2 - 4 

Thay n vào A 

=> A = 10.(1/5)2 - 4

= 10 x 1/25 - 4 = -3,6

12 tháng 8 2020

\(\frac{4}{9}x^2-4x+5=\frac{4}{9}x^2-2\cdot\frac{2}{3}x\cdot3+3^2-4=\left(\frac{2}{3}x-3\right)^2-4\)

\(\left(\frac{2}{3}x-3\right)^2\ge0\forall x\Rightarrow\left(\frac{2}{3}x-3\right)^2-4\ge-4\)

Đến chỗ này bạn xem lại đề nhé ;-; Luôn dương đâu -.- 

13 tháng 8 2020

ok bạn nhé đề bị sai đó :))))