cho S=1/31+1/32+1/33+....+1/60
. chứng minh S không phải là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(S=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\\ =(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40})+(\frac{1}{41}+...+\frac{1}{50})+(\frac{1}{51}+...+\frac{1}{60})\\ > \frac{10}{40}+\frac{10}{50}+\frac{10}{60}=\frac{37}{60}> \frac{3}{5}\)
b.
\(S=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\\ =(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40})+(\frac{1}{41}+...+\frac{1}{50})+(\frac{1}{51}+...+\frac{1}{60})\\\\ < \frac{10}{30}+\frac{10}{40}+\frac{10}{50}=\frac{47}{60}<1\)
Vậy $\frac{3}{5}< S<1$ nên $S$ không phải số nguyên.
a: B nằm giữa A và C
=>AB+BC=AC
=>BC+3=7
=>BC=4(cm)
b: M là trung điểm của AB
=>\(AM=BM=\dfrac{AB}{2}=1,5\left(cm\right)\)
Vì M nằm giữa A và B
và B nằm giữa A và C
nên M nằm giữa A và C
=>AM+MC=AC
=>MC+1,5=7
=>MC=5,5(cm)
Lời giải:
$2xy-x+y=3$
$\Rightarrow (2xy-x)+y=3$
$\Rightarrow x(2y-1)+y=3$
$\Rightarrow 2x(2y-1)+2y=6$
$\Rightarrow 2x(2y-1)+(2y-1)=5$
$\Rightarrow (2y-1)(2x+1)=5$
Do $x,y$ là số nguyên nên $2x+1,2y-1$ nguyên. Mà $(2y-1)(2x+1)=5$ nên xét các TH sau:
TH1: $2y-1=1, 2x+1=5$
$\Rightarrow y=1; x=2$
TH2: $2y-1=-1, 2x+1=-5$
$\Rightarrow y=0; x=-3$
TH3: $2y-1=5, 2x+1=1$
$\Rightarrow y=3; x=0$
TH4: $2y-1=-5, 2x+1=-1$
$\Rightarrow y=-2; x=-1$
2xy- x+y = 3
<=> x(2y-1) + y =3
<=> 2x(2y-1) + (2y -1) = 5
<=> (2y-1) (2x+1) = 5 =1.5=(-1).(-5)
lập bảng giá trị
2x+1 | 5 | 1 | -1 | -5 |
2y-1 | 1 | 5 | -5 | -1 |
x | 2 | 0 | -1 | -3 |
y | 1 | 3 | -2 | 0 |
Vậy (x:y)={(2;1),(0;3),(-1;-2),(-3;0)}
a) A = {xanh, đỏ, vàng, tím}
b) Trường hợp xấu nhất có thể xảy ra là lấy được 6 bi tím, 7 bi vàng, 7 bi đỏ và 7 bi xanh
Cần lấy thêm 1 viên bi nữa sẽ chắc chắn có ít nhất 8 viên bi cùng màu
Số viên bi cần lấy:
6 + 7 + 7 + 7 + 1 = 28 (viên)
a) A = {xanh, đỏ, vàng, tím}
b) Trường hợp xấu nhất có thể xảy ra là lấy được 6 bi tím, 7 bi vàng, 7 bi đỏ và 7 bi xanh
Cần lấy thêm 1 viên bi nữa sẽ chắc chắn có ít nhất 8 viên bi cùng màu
Số viên bi cần lấy:
6 + 7 + 7 + 7 + 1 = 28 (viên)
Ta có:
\(\dfrac{1}{32}< \dfrac{1}{31}\)
\(\dfrac{1}{33}< \dfrac{1}{31}\)
...
\(\dfrac{1}{60}< \dfrac{1}{31}\)
Cộng vế:
\(\Rightarrow S< \dfrac{1}{31}+\dfrac{1}{31}+\dfrac{1}{31}+...+\dfrac{1}{31}\)
\(\Rightarrow S< \dfrac{30}{31}< 1\) (1)
Đồng thời:
\(\dfrac{1}{31}>0\)
\(\dfrac{1}{32}>0\)
...
\(\dfrac{1}{60}>0\)
Cộng vế \(\Rightarrow S>0\) (2)
(1);(2) \(\Rightarrow0< S< 1\)
\(\Rightarrow S\) nằm giữa 2 số nguyên liên tiếp nên S không phải là số nguyên