cho tam giác abc, tia pg góc BAC cắt tia p/g góc ngoài tại C của tam giác ABC tại I. CMR ABC = 2AIC.
giúp mình vs!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xác suất để máy bay X khởi hành đúng giờ là:
`1 - 0,92 = 0,08`
Xác suất để máy bay Y khởi hành đúng giờ là:
`1 - 0,98 = 0,02`
Xác suất để duy nhất máy bay X khởi hành đúng giờ là:
`0,08 . 0.98 =` \(\dfrac{49}{625}\)
Xác suất để suy nhất máy bay Y khởi hành đúng giờ là:
`0,02 . 0,92 =` \(\dfrac{23}{1250}\)
Xác suất để chỉ có một trong 2 máy bay khởi hành đúng giờ là:
\(\dfrac{49}{625}+\dfrac{23}{1250}=\dfrac{121}{1250}\)
Đáp số: ...
Xác suất để chuyến bay hoạt động ko đúng giờ lần lượt là 0,08 và 0,02
Có duy nhất 1 trong 2 chuyến đúng giờ khi: X đúng giờ, Y sai giờ hoặc X sai giờ, Y đúng giờ
Xác suất:
\(P=0,92.0,02+0,08.0,98=0,0968\)
tk
Vẽ lại hình 3.14 vào vở và vẽ thêm góc đối đỉnh với các góc đã
cho, với mỗi góc ta vẽ được mấy góc đối đỉnh ?
V
u'
Hình 3.14
P
m
a) Ke
b) Qu
c) Qu
5B. Chol
m
m'
a: Xét ΔDAC và ΔDMB có
DA=DM
\(\widehat{ADC}=\widehat{MDB}\)(hai góc đối đỉnh)
DC=DB
Do đó: ΔDAC=ΔDMB
=>\(\widehat{DCA}=\widehat{DBM}\)
=>CA//BM
b: Xét ΔDNC và ΔDKB có
\(\widehat{DCN}=\widehat{DBK}\)
DC=DB
\(\widehat{NDC}=\widehat{KDB}\)(hai góc đối đỉnh)
Do đó: ΔDNC=ΔDKB
=>DN=DK
=>D là trung điểm của NK
a: Thời gian dự định sẽ đi hết quãng đường là:
120:50=2,4(giờ)=2h24p
Nếu đúng dự định thì ô tô sẽ đến B lúc:
7h+2h24p=9h24p
b: Đặt AC=x
BC=AB-AC=120-x(km)
Thời gian ô tô đi hết quãng đường AC là \(\dfrac{x}{50}\left(giờ\right)\)
Thời gian ô tô đi hết quãng đường BC là: \(\dfrac{120-x}{60}\left(giờ\right)\)
Ô tô đến B sớm hơn dự kiến 5p nên ta có: \(\dfrac{x}{50}+\dfrac{1}{12}+\dfrac{120-x}{60}=2,4-\dfrac{1}{12}\)
=>\(\dfrac{x}{50}+\dfrac{120-x}{60}=2,4-\dfrac{1}{6}=\dfrac{12}{5}-\dfrac{1}{6}=\dfrac{72-5}{30}=\dfrac{67}{30}\)
=>\(\dfrac{6x+5\left(120-x\right)}{300}=\dfrac{670}{300}\)
=>6x+5(120-x)=670
=>x+600=670
=>x=70(nhận)
Vậy: Độ dài quãng đường AC là 70km
a:
ĐKXĐ: \(x\notin\left\{1;-3\right\}\)
\(A=\left(\dfrac{2x^2+1}{x^3-1}-\dfrac{1}{x-1}\right):\left(1-\dfrac{x^2-2}{x^2+x+1}\right)\)
\(=\left(\dfrac{2x^2+1}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{1}{x-1}\right):\dfrac{x^2+x+1-x^2+2}{x^2+x+1}\)
\(=\dfrac{2x^2+1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+x+1}{x+3}\)
\(=\dfrac{x^2-x}{\left(x-1\right)}\cdot\dfrac{1}{x+3}=\dfrac{x}{x+3}\)
b: |x-5|=2
=>\(\left[{}\begin{matrix}x-5=2\\x-5=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\left(nhận\right)\\x=3\left(loại\right)\end{matrix}\right.\)
Khi x=7 thì \(A=\dfrac{7}{7+3}=\dfrac{7}{10}\)
c: Để A nguyên thì \(x⋮x+3\)
=>\(x+3-3⋮x+3\)
=>\(-3⋮x+3\)
=>\(x+3\in\left\{1;-1;3;-3\right\}\)
=>\(x\in\left\{-2;-4;0;-6\right\}\)
\(8x-2^2=12\)
=>8x-4=12
=>8x=12+4=16
=>\(x=\dfrac{16}{8}=2\)
`8x - 2^2 = 12`
`=> 8x - 4 = 12`
`=> 8x = 12 + 4 `
`=> 8x = 16`
`=> x = 16 : 8`
`=> x = 2 `
Vậy `x =2`