\(x^2-\left(m+4\right)x+m^2+2m-1=0\). Giả sử \(x_0\) là nghiệm của phương trình đã cho. Tìm GTLN và GTNN của \(x_0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ez
Ta có : [ x ] \(\le\)x ;[ y ] \(\le\)y
\(\Rightarrow\)[ x ] + [ y ] \(\le\)x + y
Nên [ x ] + [ y ] là số nguyên không vượt quá x + y
mà [ x + y ] là số nguyên lớn nhất không vượt quá x + y
Do đó : [ x ] + [ y ] \(\le\)[ x + y ]
\(x^2-2\left(m+1\right)x+4m-4=0\left(a=1;b=-2\left(m+1\right);c=4m-4\right)\)
Ta có \(\Delta'=\left(-\left(m+1\right)\right)^2-1.\left(4m-4\right)\)
\(=m^2+2m+1-4m+4\)
\(=m^2-2m+5\)
\(=\left(m-1\right)^2+4\)
Để phương trình có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'>0\Leftrightarrow\left(m-1\right)^2+4>0\forall m\) (vì \(\left(m-1\right)^2\ge0\forall m\) ) (ĐPCM)
Giải chi tiết:
a) Chứng minh tứ giác AB’HC’ nội tiếp đường tròn.
Xét tứ giác AB’HC’ có ∠AB′H+∠AC′H=900+900=1800⇒∠AB′H+∠AC′H=900+900=1800⇒ Tứ giác AB’HC’ là tứ giác nội tiếp (Tứ giác có tổng hai góc đối bằng 1800).
b) Gọi I là giao điểm của hai đường thẳng HD và BC. Chứng minh I là trung điểm của đoạn BC.
Ta có ∠ABD=900∠ABD=900 (góc nội tiếp chắn nửa đường tròn) ⇒AB⊥BD⇒AB⊥BD.
Mà CH⊥AB(gt)⇒BD∥CHCH⊥AB(gt)⇒BD∥CH
Chứng minh tương tự ta có CD∥BHCD∥BH.
⇒⇒ Tứ giác BHCD là tứ giác nội tiếp (Tứ giác có các cặp cạnh đối song song)
Mà BC∩HD=I(gt)⇒IBC∩HD=I(gt)⇒I là trung điểm của BC.
c) Tính AHAA′+BHBB′+CHCC′AHAA′+BHBB′+CHCC′.
Ta có:
SHBCSABC=12HA′.BC12AA′.BC=HA′AA′⇒1−SHBCSABC=1−HA′AA′=AA′−HA′AA′=AHAA′SHBCSABC=12HA′.BC12AA′.BC=HA′AA′⇒1−SHBCSABC=1−HA′AA′=AA′−HA′AA′=AHAA′
Chứng minh tương tự ta có: BHBB′=1−SHACSABC;CHCC′=1−SHABSABCBHBB′=1−SHACSABC;CHCC′=1−SHABSABC
⇒AHAA′+BHBB′+CHCC′=1−SHBCSABC+1−SHACSABC+1−SHABSABC=3−SHBC+SHAC+SHABSABC=3−1=2⇒AHAA′+BHBB′+CHCC′=1−SHBCSABC+1−SHACSABC+1−SHABSABC=3−SHBC+SHAC+SHABSABC=3−1=2
Bài này giải theo cách lớp 9 thì thực sự bó tay.
Đặt x = y - 2/3
\(x^3+2x^2-23x+8=0\)
\(\left(y-\frac{2}{3}\right)^3+2\left(y-\frac{2}{3}\right)^2-23\left(y-\frac{2}{3}\right)+8=0\)
\(\Leftrightarrow y^3-2y^2+\frac{4}{3}y-\frac{8}{27}+2y^2-\frac{8}{3}y+\frac{8}{9}-23y+\frac{46}{3}+8=0\)
\(\Leftrightarrow y^3-\frac{73}{3}y+\frac{646}{27}=0\) (1)
Đặt \(a=\sqrt{-\frac{4}{3}.\frac{-73}{3}}=\frac{2\sqrt{73}}{3}\)
Đặt \(y=a.\cos t\)
với \(0\le t\le\pi\)
Thay vào (1), ta có:
\(a^3\cos^3t-\frac{73}{3}a\cos t=-\frac{646}{27}\)
\(\Leftrightarrow\frac{292}{9}.\frac{2\sqrt{73}}{3}\cos^3t-\frac{73}{3}.\frac{2\sqrt{73}}{3}\cos t=-\frac{646}{27}\)
\(\Leftrightarrow-\frac{73}{3}.\frac{2\sqrt{73}}{3}\left(-\frac{4}{3}\cos^3t+\cos t\right)=-\frac{646}{27}\)
\(\Leftrightarrow146\sqrt{73}\left(4\cos^3t-3\cos t\right)=646\)
\(\Leftrightarrow146\sqrt{73}.\cos\left(3t\right)=646\)
\(\cos\left(3t\right)=\frac{323\sqrt{73}}{5329}\)
\(t=\frac{\pm arccos\left(\frac{323\sqrt{73}}{5329}\right)}{3}+\frac{2k\pi}{3}\left(k\in Z\right)\)
Vì \(0\le t\le\pi\)
\(\Rightarrow t=\frac{arccos\left(\frac{323\sqrt{73}}{5329}\right)}{3}\) hoặc \(t=\frac{arccos\left(\frac{323\sqrt{73}}{5329}\right)}{3}+\frac{2\pi}{3}\)hoặc \(t=\frac{-arccos\left(\frac{323\sqrt{73}}{5329}\right)}{3}+\frac{2\pi}{3}\)
\(x=y+\frac{2}{3}=-\frac{73}{3}\cos t+\frac{2}{3}\)
Vậy nghiệm của pt là
\(\left\{-\frac{73}{3}\cos\frac{arccos\left(\frac{323\sqrt{73}}{5329}\right)}{3}+\frac{2}{3};-\frac{73}{3}\cos\left(\frac{arccos\left(\frac{323\sqrt{73}}{5329}\right)}{3}+\frac{2\pi}{3}\right)+\frac{2}{3};-\frac{73}{3}\cos\left(\frac{-arccos\left(\frac{323\sqrt{73}}{5329}\right)}{3}+\frac{2\pi}{3}\right)+\frac{2}{3}\right\}\)
Các góc đều ở chế độ radian (Hàm arccos trong casio là cos-1)
***P/S: giải theo lớp 9 thì chịu
Nhầm: Đổi \(-\frac{73}{3}\) thành \(\frac{2\sqrt{73}}{3}\)mới đúng
cho a,b,c là các số ko âm có tổng =1. tìm gtnn A=\(\frac{\left(a+b+c\right)\left(a+b\right)}{abcd}\)
áp dụng BĐT Cô-si,ta có :
\(1=a+b+c+d\ge2\sqrt{\left(a+b+c\right)d}\)
\(\Rightarrow1\ge4\left(a+b+c\right)d\)
\(\Rightarrow a+b+c\ge4\left(a+b+c\right)^2d\ge16\left(a+b\right)cd\)
\(A=\frac{\left(a+b+c\right)\left(a+b\right)}{abcd}\ge\frac{16\left(a+b\right)^2cd}{abcd}=\frac{16\left(a+b\right)^2}{ab}\ge64\)
Vậy GTNN của A là 64 khi \(=a=b=\frac{1}{8};c=\frac{1}{4};d=\frac{1}{2}\)
Mình xử lý phần dấu "=" của @Thanh Tùng DZ@
Dấu "=" xảy ra <=> \(\hept{\begin{cases}a+b+c+d=1\\a+b+c=d\\a+b=c\end{cases}}\)và a=b
\(\Leftrightarrow\hept{\begin{cases}8a=1\\d=4a\\c=2a\end{cases}}\)và a=b
\(\Leftrightarrow a=b=\frac{1}{8};c=\frac{1}{4};d=\frac{1}{2}\)
\(\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)=40\)
\(\Leftrightarrow\left(x+1\right)\left(x+5\right)\left(x+2\right)\left(x+4\right)=40\)
\(\Leftrightarrow\left(x^2+6x+5\right)\left(x^2+6x+8\right)=40\)
\(\Leftrightarrow\left(x^2+6x+5\right)\left(x^2+6x+5+3\right)=40\)
\(\Leftrightarrow p\left(p+3\right)=40\) (khi đặt \(\left(x^2+6x+5\right)=p\)
\(\Leftrightarrow p^2+3p=40\)
\(\Leftrightarrow p^2\cdot2\cdot p\cdot\frac{3}{2}+\left(\frac{3}{2}\right)^2=\frac{169}{4}\)
\(\Leftrightarrow\left(p+\frac{3}{2}\right)^2-\left(\frac{13}{2}\right)^2=0\)
\(\Leftrightarrow\left(p+\frac{3}{2}-\frac{13}{2}\right)\left(p+\frac{3}{2}+\frac{13}{2}\right)=0\)
\(\Leftrightarrow\left(p-5\right)\left(p+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}p=5\\p=-8\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+6x+5=5\\x^2+6x+5=-8\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+6x=0\\x^2+2\cdot x\cdot3+9-9+5=-8\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x\left(x+6\right)=0\\\left(x+3\right)^2=-4\left(\text{vôlí}\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-6\end{cases}}\)
\(\left(x-2\right)\left(x^2+5x-7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x^2+5x-7=0\end{cases}}\)
Ta có: \(\Delta=25-4\cdot\left(-7\right)=25+28=53\)
\(\Rightarrow\Delta>0\)
\(\Rightarrow\text{pt có 2 nghiệm pb}\)
\(\Rightarrow\hept{\begin{cases}x_1=\frac{-5-\sqrt{53}}{2}\\x_2=\frac{-5+\sqrt{53}}{2}\end{cases}}\)
\(\text{Vậy pt trên có nghiệm là x=2; x=}\frac{-5\pm\sqrt{53}}{2}\)
Do x0 là nghiệm của phương tình x2-m(m+4)x+m2+2m-1=0 nên tồn tại m để x02 -(m+4)x0+m2+2m-1=0
<=> m2+(2-x0)m+x02-4x0 -1=0 có nghiệm
<=> (2-x0)2 -4(x02-4x0-1) >=0
<=> -3x02+12x0+8 >=0
<=> \(\frac{6-2\sqrt{15}}{3}\le x_0\le\frac{6+2\sqrt{15}}{3}\)
Tự xử lý phần dấu "="