Tìm GTLN hoặc GTNN của các biểu thức sau:
1)A=(x-1/2)^2+3/4 2)B=I3x-1I-5 3)C=-(2-x)^2+5
4)D=(x^2-4)^2+Iy-xI+3 5)E=(x-1)^2+(x^2-1)^4 6)F=2/(x+3)^2+3
7) G=2023/(x^2+1)^2+2022
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3+\dfrac{6}{11}=\dfrac{33}{11}+\dfrac{6}{11}=\dfrac{39}{11}\)
Lời giải:
$P(1)=1^{2024}+1^{2023}+....+1+1P(1)$
$=\underbrace{1+1+...+1}_{2024}+P(1)=2024+P(1)$
$\Rightarrow 2024=0$ (vô lý)
Vậy không tồn tại $P(x)$ thỏa mãn đề.
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
=>\(\widehat{BAH}=\widehat{CAH}\)
=>AH là phân giáccủa góc BAC
b: Ta có: \(\widehat{DHA}=\widehat{HAC}\)(DH//AC)
\(\widehat{DAH}=\widehat{HAC}\)(AH là phân giác của góc BAC)
Do đó: \(\widehat{DHA}=\widehat{DAH}\)
=>ΔDAH cân tại D
c: Ta có: \(\widehat{DAH}+\widehat{DBH}=90^0\)(ΔAHB vuông tại H)
\(\widehat{DHA}+\widehat{DHB}=\widehat{AHB}=90^0\)
mà \(\widehat{DAH}=\widehat{DHA}\)
nên \(\widehat{DBH}=\widehat{DHB}\)
=>DB=DH
=>DB=DA
=>D là trung điểm của AB
ΔAHB=ΔAHC
=>HB=HC
=>H là trung điểm của BC
Xét ΔABC có
AH,CD là các đường trung tuyến
AH cắt CD tại G
Do đó: G là trọng tâm của ΔABC
B = \(\dfrac{-8}{2n-1}\) (n \(\in\) Z)
a; Tìm điều kiện của số nguyên n để B là phân số
B là phân số khi và chỉ khi 2n - 1 \(\ne\) 0 ⇒ n ≠ \(\dfrac{1}{2}\)
Vậy B là phân số với mọi giá trị của n \(\in\) Z
b; Tìm số nguyên n để B nguyên
B = \(\dfrac{-8}{2n-1}\) \(\in\) Z ⇔ 8 ⋮ 2n - 1
2n - 1 \(\in\) Ư(8) = {-8; -4; -2; -1; 1; 2; 4; 8}
Lập bảng ta có:
2n - 1 | -8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 |
n | -7/2 | -3/2 | -1/2 | 0 | 1 | 3/2 | 5/2 | 9/2 |
vì n thuộc z nên theo bảng trên ta có: n \(\in\){0; 1}
Kết luận với n \(\in\) {0; 1} thì biểu thức B =\(\dfrac{-8}{2n-1}\) là một só nguyên.
A = \(\dfrac{2}{3.8}\) + \(\dfrac{2}{8.13}\) + \(\dfrac{2}{13.18}\) + ... + \(\dfrac{2}{58.63}\)
A = 2.\(\dfrac{5}{5}\).(\(\dfrac{1}{3.8}\) + \(\dfrac{1}{8.13}\) + \(\dfrac{1}{13.18}\)+...+ \(\dfrac{2}{58.63}\))
A = \(\dfrac{2}{5}\).(\(\dfrac{5}{3.8}\) + \(\dfrac{5}{8.13}\) + \(\dfrac{5}{13.18}\) + ... + \(\dfrac{5}{58.63}\))
A = \(\dfrac{2}{5}\).(\(\dfrac{1}{3}\) - \(\dfrac{1}{8}\) + \(\dfrac{1}{8}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{18}+...+\dfrac{1}{58}-\dfrac{1}{63}\))
A = \(\dfrac{2}{5}\).(\(\dfrac{1}{3}\) - \(\dfrac{1}{63}\))
A = \(\dfrac{2}{5}\). \(\dfrac{20}{63}\)
A = \(\dfrac{8}{63}\)
\(\dfrac{7}{8}+66\%+\dfrac{34}{100}+0,125\)
\(=0,875+0,66+0,34+0,125\)
\(=\left(0,875+0,125\right)+\left(0,66+0,34\right)\)
\(=1+1\)
\(=2\)
Câu 2:
1; Giải hệ phương trình:
\(\left\{{}\begin{matrix}x+y=7\\3x-2y=16\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=7-y\\3x=16+2y\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=7-y\\3.\left(7-y\right)=16+2y\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=7-y\\21-3y=16+2y\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=7-y\\2y+3y=21-16\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=7-y\\5y=5\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=7-y\\y=5:5\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=7-y\\y=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=7-1\\y=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=6\\y=1\end{matrix}\right.\)
Vậy (\(x;y\)) = (6; 1)
2; Đường thẳng y = (m - 3)\(x\) + 2m - 2 cắt đường thẳng y = 3\(x\) - 2
tại một điểm trên trục hoành nên y = 0
Ta có hệ phương trình:
\(\left\{{}\begin{matrix}\left(m-3\right)x+2m-2=0\\3x-2=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(m-3\right)x+2m-2=0\\3x=2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(m-3\right)x+2m-2=0\left(1\right)\\x=\dfrac{2}{3}\end{matrix}\right.\)
Thay \(x\) = \(\dfrac{2}{3}\) vào phương trình (1) ta có:
(m - 3)\(\dfrac{2}{3}\) + 2m - 2= 0
\(\dfrac{2}{3}\)m - 2 + 2m - 2 = 0
\(\dfrac{2}{3}\)m + 2m = 2 + 2
\(\dfrac{8}{3}\)m = 4
m = 4 : \(\dfrac{8}{3}\)
m = \(\dfrac{3}{2}\)
Kết luận với m = \(\dfrac{3}{2}\) thì phương trình đường thẳng y = (m - 3)\(x\) + 2m - 2 cắt đường thẳng y = 3\(x\) - 2 tại một điểm trên trục hoành.
1: \(\left(x-\dfrac{1}{2}\right)^2>=0\forall x\)
=>\(A=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x-\dfrac{1}{2}=0\)
=>\(x=\dfrac{1}{2}\)
2: \(\left|3x-1\right|>=0\forall x\)
=>\(\left|3x-1\right|-5>=-5\forall x\)
Dấu '=' xảy ra khi 3x-1=0
=>3x=1
=>\(x=\dfrac{1}{3}\)
3: \(\left(2-x\right)^2>=0\forall x\)
=>\(-\left(2-x\right)^2< =0\forall x\)
=>\(C=-\left(2-x\right)^2+5< =5\forall x\)
Dấu '=' xảy ra khi 2-x=0
=>x=2
4: \(\left(x^2-4\right)^2>=0\forall x\)
\(\left|y-x\right|>=0\forall x,y\)
Do đó: \(\left(x^2-4\right)^2+\left|y-x\right|>=0\forall x,y\)
=>\(D=\left(x^2-4\right)^2+\left|y-x\right|+3>=3\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x^2-4=0\\y-x=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\in\left\{2;-2\right\}\\y=x\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}y=x=2\\y=x=-2\end{matrix}\right.\)
5: \(\left(x-1\right)^2>=0\forall x\)
\(\left(x^2-1\right)^4>=0\forall x\)
Do đó: \(E=\left(x-1\right)^2+\left(x^2-1\right)^4>=0\forall x\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-1=0\\x^2-1=0\end{matrix}\right.\)
=>x=1
6: \(\left(x+3\right)^2+3>=3\forall x\)
=>\(F=\dfrac{2}{\left(x+3\right)^2+3}< =\dfrac{2}{3}\forall x\)
Dấu '=' xảy ra khi x+3=0
=>x=-3
7: \(\left(x^2+1\right)^2>=1^2=1\forall x\)
=>\(\left(x^2+1\right)^2+2022>=2023\forall x\)
=>\(G=\dfrac{2023}{\left(x^2+1\right)^2+2022}< =\dfrac{2023}{2023}=1\forall x\)
Dấu '=' xảy ra khi x=0
Bạn chia từng bài ra ý nhỏ để dễ làm hơn ạ.