K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2020

đặt \(\sqrt{2-x}=a;\sqrt{2+x}=b\)  \(\left(a+b\ge0\right)\)=> \(2-x=a^2;2+x=b^2\)=> \(a^2+b^2=4\)

=> Ta có hệ phương trình mới sau khi đặt 2 ẩn phụ là a; b 

\(\hept{\begin{cases}a^2+b^2=4\\a+b+ab=2\end{cases}}\)<=> \(\hept{\begin{cases}\left(a+b\right)^2=4+2ab\\ab=2-a-b\end{cases}}\)Thay 2ab=4-2a-2b từ pt (2) lên pt (1) ta được:

=> \(\left(a+b\right)^2=4+4-2a-2b\)

<=> \(\left(a+b\right)^2+2\left(a+b\right)=8\)

<=> \(a+b=2\)hoặc \(a+b=-4\)

Do \(a+b\ge0\)=> \(a+b=2\)<=> \(ab=0\)

<=> \(a=0;b=2\)hoặc \(a=2;b=0\)

Trường hợp 1: a=0; b=2 

Khi đó \(\sqrt{2-x}=0;\sqrt{2+x}=2\)<=> x=2

Trường hợp 2: a=2; b=0 

Khi đó \(\sqrt{2-x}=2;\sqrt{2+x}=0\)và cũng ra x=2

Vậy pt có nghiệm duy nhất là x=2. 

5 tháng 8 2020

ĐK: \(-2\le x\le2\)

Đặt: \(\sqrt{2-x}+\sqrt{2+x}=t\ge0\)

=> \(t^2=4+2\sqrt{4-x^2}\)

=> \(\sqrt{4-x^2}=\frac{t^2-4}{2}\)

Ta có phương trình: \(t+\frac{t^2-4}{2}=2\)

<=? \(t^2+2t+1=9\)

<=> \(\left(t+1\right)^2=9\)

<=> \(\orbr{\begin{cases}t+1=3\\t+1=-3\end{cases}}\Leftrightarrow\orbr{\begin{cases}t=2\\t=-4\left(loai\right)\end{cases}}\)

Với t = 2 ta thay vào: 

\(t^2=4+2\sqrt{4-x^2}\)

khi đó có phương trinh: 

\(4=4+2\sqrt{4-x^2}\)

<=> \(\sqrt{4-x^2}=0\Leftrightarrow x=\pm2\)( thỏa mãn đk) 

Vậy:...

5 tháng 8 2020

\(xy^2+y^2-x^2+xy-2x+y=0\)

<=> \(y^2\left(x+1\right)+y\left(x+1\right)+1=\left(x+1\right)^2\)

Do x, y thuộc Z => \(y^2\left(x+1\right);y\left(x+1\right);\left(x+1\right)^2\)chia hết cho x+1

=> 1 chia hết cho x+1. Do x thuộc Z => x+1=1 hoặc -1

<=> x=0 hoặc x=-2

=> Thay x=0 hoặc x=-2 vào pt ban đầu và tìm ra y.

7 tháng 8 2020

thanks bạn nha:)

5 tháng 8 2020

ta có \(AM^2=\frac{AB^2+BC^2}{2}-\frac{AC^2}{4}\)( CÔNG THỨC TÍNH ĐƯỜNG TRUNG TUYẾN )

thay \(3,5^2=\frac{4^2+BC^2}{2}-\frac{7^2}{4}\)

\(\Leftrightarrow12.25=\frac{4^2+BC^2}{2}-12,25\)

\(\Leftrightarrow24,5=\frac{4^2+BC^2}{2}\)

\(\Leftrightarrow49=16+BC^2\)

\(\Leftrightarrow33=BC^2\)

\(\Leftrightarrow BC=\sqrt{33}=5.7\left(cm\right)\)

s/p lần đầu làm dạng này

5 tháng 8 2020

71+65.=x-260

5 tháng 8 2020

Bài làm:

Ta có: \(\frac{3+a^2}{b+c}+\frac{3+b^2}{c+a}+\frac{3+c^2}{a+b}\)

\(=\frac{3}{b+c}+\frac{a^2}{b+c}+\frac{3}{c+a}+\frac{b^2}{c+a}+\frac{3}{a+b}+\frac{c^2}{a+b}\)

\(=3\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)+\left(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right)\)

Áp dụng bất đẳng thức Cauchy Schwars ta được:

\(VT\ge3.\frac{\left(1+1+1\right)^2}{a+b+b+c+c+a}+\frac{\left(a+b+c\right)^2}{b+c+c+a+a+b}\)

\(=3.\frac{9}{2\left(a+b+c\right)}+\frac{3^2}{2\left(a+b+c\right)}\)

\(=3.\frac{9}{2.3}+\frac{9}{2.3}=\frac{9}{2}+\frac{9}{6}=6\)

Dấu "=" xảy ra khi: \(a=b=c=1\)

6 tháng 8 2020

Nếu bn phải vẽ hình và chứng minh thì đây nhé

  B C A H M b c h

\(\Delta ABC\)vuông tại A, đường cao AH, trung tuyến AM. Đặt \(\widehat{C}=\alpha\)\(AH=h,\)\(AC=b,\)\(BC=a\)

\(\Rightarrow\Delta AMC\)cân tại M \(\Rightarrow\widehat{MAC}=\widehat{C}=\alpha\)

Vì \(\widehat{AMH}\)là góc ngoài của \(\Delta AMC\)\(\Rightarrow\widehat{AMH}=\widehat{MAC}+\widehat{C}=2\alpha\)

Ta có:

\(\sin\alpha=\sin C=\frac{AH}{AC}=\frac{h}{b}\)    (1)

\(\cos\alpha=\cos C=\frac{AC}{BC}=\frac{b}{a}\)   (2)

\(\sin2\alpha=\sin AMH=\frac{AH}{AM}=\frac{h}{\frac{a}{2}}=\frac{2h}{a}\)  (3)

Từ (1) và (2) suy ra: \(2\sin\alpha\cdot\cos\alpha=2\cdot\frac{h}{b}\cdot\frac{b}{a}=\frac{2h}{a}\)(4)

Từ (3) và (4) suy ra đpcm. Câu dưới mình đang làm bạn chờ xíu nhé ^^

5 tháng 8 2020

Nếu mình nhớ đúng thì công thức này lên lớp 10 mới học đúng không?

\(\sin2\alpha=\sin\left(\alpha+\alpha\right)=\sin\alpha\cos\alpha+\cos\alpha\sin\alpha=2\sin\alpha\cos\alpha\)

\(\cos2\alpha=\cos\left(\alpha+\alpha\right)=\cos\alpha\cos\alpha-\sin\alpha\sin\alpha=\cos^2\alpha-\sin^2\alpha=\left(1-\sin^2\alpha\right)-\sin^2\alpha\)

\(=1-2\sin^2\alpha\)

5 tháng 8 2020

\(A=1+\frac{2}{\sqrt{x}+1};B=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+2}-\frac{3\sqrt{x}}{x+\sqrt{x}-2}\)

đề bài là thế này ạ!?

5 tháng 8 2020

a) Áp dụng HTL => \(AE.AB=AH^2\)và \(AF.AC=AH^2\)

<=> Ta lần lượt có \(AE.m=AH^2\)và \(AF.n=AH^2\)

Tiếp tục áp dụng HTL => \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)=> \(\frac{1}{AH^2}=\frac{1}{m^2}+\frac{1}{n^2}=\frac{\left(m^2+n^2\right)}{m^2n^2}\)

<=> \(AH^2=\frac{\left(m^2n^2\right)}{m^2+n^2}\)

=> AE.m=\(\frac{m^2n^2}{m^2+n^2}\)và AF.n=\(\frac{m^2n^2}{m^2+n^2}\) 

=> AE; AF=......

5 tháng 8 2020

b) Lần lượt áp dụng các HTL, ta có: 

\(BE.AE=HE^2\)\(AF.CF=HF^2\)

<=> \(BE.CF.AE.AF=\left(HE.HF\right)^2\)

Do tứ giác AEHF có 3 góc vuông => AEHF là HCN => HE=AF; HF=AE; AH=EF

<=> \(BE.CF.BC=AE.AF.BC\) \(=\frac{AE.AF.BC.AH}{AH}\)\(=\frac{AE.AB.AF.AC}{AH}\)(HTL)\(=\frac{AH^2.AH^2}{AH}=AH^3=EF^3\)(Lại Áp dụng HTL) 

=> \(BC.CF.BC=EF^3\left(đpcm\right)\)

6 tháng 8 2020

Bạn xem lại đề bài 1 và 2.b nhé !

2/ \(A=\sqrt{\left(3-5\sqrt{2}\right)^2}-\sqrt{51+10\sqrt{2}}\)

\(A=5\sqrt{2}-3-\sqrt{\left(5\sqrt{2}+1\right)^2}\)

\(A=5\sqrt{2}-3-5\sqrt{2}-1\)

\(A=-4\)

5 tháng 8 2020

\(\frac{\sqrt{12}-\sqrt{30}}{\sqrt{6}}\cdot\frac{\sqrt{35}+\sqrt{14}}{\sqrt{7}}\)

\(=\frac{2\sqrt{3}-\sqrt{30}}{\sqrt{6}}\cdot\frac{\sqrt{35}+\sqrt{14}}{\sqrt{7}}\)

\(=\frac{\left(2\sqrt{3}-\sqrt{30}\right)\cdot\left(\sqrt{35}+\sqrt{14}\right)}{\sqrt{6}\cdot\sqrt{7}}\)

\(=\frac{\left(2\sqrt{3}-\sqrt{30}\right)\cdot\left(\sqrt{35}+\sqrt{14}\right)}{\sqrt{42}}\)

\(=\frac{2\sqrt{3}\cdot\sqrt{35}+2\sqrt{3}\cdot\sqrt{14}-\sqrt{30}\cdot\sqrt{35}-\sqrt{30}\cdot\sqrt{14}}{\sqrt{42}}\)

\(=\frac{2\sqrt{105}+2\sqrt{42}-5\sqrt{42}-2\sqrt{105}}{\sqrt{42}}\)

\(=\frac{-3\sqrt{42}}{\sqrt{42}}=-3\)

5 tháng 8 2020

\(=\frac{\sqrt{2}.\sqrt{6}-\sqrt{5}.\sqrt{6}}{\sqrt{6}}.\frac{\sqrt{5}.\sqrt{7}+\sqrt{2}.\sqrt{7}}{\sqrt{7}}\)

\(=\left(\sqrt{2}-\sqrt{5}\right)\left(\sqrt{2}+\sqrt{5}\right)=2-5=-3\)