Cho△ABC vuông tại A, có góc C = 30độ Trên cạnh BC lấy điểm D sao cho BD = BA
a) Chứng minh △ ABD là tam giác đều ABC.
b) Qua D kẻ DE vuông góc với BC, E AC . Chứng minh BE là phân giác của ABC.
c) Chứng minh AD = 1/2BC
d) Qua C kẻ đường thẳng vuông góc với BE, nó cắt BA, BE lần lượt tại M và N. Chứng minh 3 đường thẳng BA, CN, DE cùng đi qua 1 điểm.
a: ΔABC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ABC}=90^0-30^0=60^0\)
Xét ΔBAD có BA=BD và \(\widehat{ABD}=60^0\)
nên ΔBAD đều
b: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có
BE chung
BA=BD
Do đó: ΔBAE=ΔBDE
=>\(\widehat{ABE}=\widehat{DBE}\)
=>BE là phân giác của góc ABC
c: Ta có: \(\widehat{DAC}+\widehat{DAB}=\widehat{BAC}\)
=>\(\widehat{DAC}+60^0=90^0\)
=>\(\widehat{DAC}=30^0\)
Xét ΔDAC có \(\widehat{DAC}=\widehat{DCA}\left(=30^0\right)\)
nên ΔDAC đều
=>DA=DC
=>DC=DB
=>D là trung điểm của BC
=>\(AD=\dfrac{1}{2}BC\)
d: Xét ΔBMC có
BN,CA là các đường cao
BN cắt CA tại E
Do đó: E là trực tâm của ΔBMC
=>ME\(\perp\)BC
mà ED\(\perp\)BC
nên M,E,D thẳng hàng
=>BA,CN,DE đồng quy
mọi ng giúp e nhanh với, e cảm ơn rất nhiềuuu