Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có A+B+C=180 độ ( tổng 3 góc trong tam giác)
=> C= 180 độ - ( A+B) =60 độ
b. Xét 2 tam giác vuông : tam giác : DCA và DCM có :
DC chung; góc DCA = góc DCM ( cd là phân giác của acm ); CM=CA (gt)
=>tam giác DCM=tam giác DCA (c.g.c)
c. xét hai tam giác vuông : DCA và KAC có :
AC chung; góc DCA = góc CAK ( so le trong vì DC // AK )
=> DCA=KAC(cgv. gn )=>AK=CD(2 góc tương ứng )
d. ta có: tam giác : DCA = KAC ( câu c)=>AKC=ADC (2 góc tương ứng)
Mà CAK+AKC+KCA=180 độ ( tổng 3 góc trong tam giác)
=>AKC= 180-90-30=60 độ
vì KAC=ACD60/2=30 độ
Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá
3/ (Bạn tự vẽ hình giùm)
a/ \(\Delta ABC\)và \(\Delta ADC\)có:
\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)
Cạnh AC chung
\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)
=> \(\Delta ABC\)= \(\Delta ADC\)(g. c. g)
=> AD = BC (hai cạnh tương ứng)
và AB = DC (hai cạnh tương ứng)
b/ Ta có AD = BC (cm câu a)
và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)
và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)
=> AN = MC
Chứng minh tương tự, ta cũng có: BM = ND
\(\Delta AMB\)và \(\Delta CND\)có:
BM = ND (cmt)
\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)
AB = CD (\(\Delta ABC\)= \(\Delta ADC\))
=> \(\Delta AMB\)= \(\Delta CND\)(c. g. c)
=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)
và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)= \(\Delta ADC\))
=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)
=> \(\widehat{MAC}=\widehat{ACN}\)(1)
Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)
và AN = MC (cmt) (3)
=> \(\Delta MAC=\Delta NAC\)(g, c. g)
=> AM = CN (hai cạnh tương ứng) (đpcm)
c/ \(\Delta AOB\)và \(\Delta COD\)có:
\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)
AB = CD (cm câu a)
\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)
=> \(\Delta AOB\)= \(\Delta COD\)(g. c. g)
=> OA = OC (hai cạnh tương ứng)
và OB = OD (hai cạnh tương ứng)
d/ \(\Delta ONA\)và \(\Delta MOC\)có:
\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)
OA = OC (O là trung điểm AC)
\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)
=> \(\Delta ONA\)= \(\Delta MOC\)(g. c. g)
=> ON = OM (hai cạnh tương ứng)
=> O là trung điểm MN
=> M, O, N thẳng hàng (đpcm)
a) Do KO là tia phân giác của ∠IKL (gt)
⇒ ∠OKL = ∠OKI = ∠IKL : 2
Do LO là tia phân giác của ∠ILK (gt)
⇒ ∠ILO = ∠OLK = ∠ILK : 2
∆IKL có:
∠IKL + ∠ILK + ∠KIL = 180⁰ (tổng ba góc trong ∆IKL)
⇒ ∠IKL + ∠ILK = 180⁰ - ∠KIL
= 180⁰ - 70⁰
= 110⁰
⇒ ∠OKL + ∠OLK = ∠IKL : 2 + ∠ILK : 2
= (∠IKL + ∠ILK) : 2
= 110⁰ : 2
= 55⁰
∆OKL có:
∠OKL + ∠OLK + ∠KOL = 180⁰ (tổng ba góc trong ∆OKL)
⇒ ∠KOL = 180⁰ - (∠OKL + ∠OLK)
= 180⁰ - 55⁰
= 125⁰
b) Do KO và LO là hai đường phân giác của ∆KIL (gt)
⇒ IO là đường phân giác thứ ba của ∆KIL
⇒ IO là tia phân giác của ∠KIL
⇒ ∠KIO = ∠KIL : 2
= 70⁰ : 2
= 35⁰
c) Do O là giao điểm của ba đường phân giác của ∆KIL
⇒ O cách đều ba cạnh của ∆KIL
cảm ơn