cuoi hoc ki 1 , so hoc sinh gioi cua khoi 5 la 60 hoc sinh , chiem 15% so hoc sinh toan truong
a] tinh so hoc sinh toan truong
B] tinh so hoc sinh khoi 5 biet so hoc sinh khoi 5 bng 22,5 % so hoc sinh toan truong
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AMHN có \(\widehat{AMH}+\widehat{ANH}=90^0+90^0=180^0\)
nên AMHN là tứ giác nội tiếp
b: Xét tứ giác BNMC có \(\widehat{BNC}=\widehat{BMC}=90^0\)
nên BNMC là tứ giác nội tiếp
=>\(\widehat{BNM}+\widehat{BCM}=180^0\)
mà \(\widehat{BNM}+\widehat{ANM}=180^0\)(hai góc kề bù)
nên \(\widehat{ANM}=\widehat{ACB}\)
Thay y=-2 vào (d), ta được:
\(\dfrac{1}{2}x+2=-2\)
=>\(\dfrac{x}{2}=-4\)
=>x=-8
Thay x=-8 và y=-2 vào y=ax+b, ta được:
\(a\cdot\left(-8\right)+b=-2\)
=>-8a+b=-2
=>8a-b=2(1)
Thay x=2 và y=-3 vào y=ax+b, ta được:
\(a\cdot2+b=-3\)
=>2a+b=-3(2)
Từ (1),(2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}8a-b=2\\2a+b=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}10a=-1\\8a-b=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a=-\dfrac{1}{10}\\b=8a-2=-\dfrac{8}{10}-2=-\dfrac{28}{10}=-\dfrac{14}{5}\end{matrix}\right.\)
Vậy: (d'): \(y=-\dfrac{1}{10}x-\dfrac{14}{5}\)
A = \(\dfrac{7}{23}\).\(\dfrac{5}{17}\) + \(\dfrac{7}{17}\).\(\dfrac{12}{23}\) + \(\dfrac{-30}{23}\)
A = \(\dfrac{7}{23}\).\(\dfrac{5}{17}\) + \(\dfrac{7}{23}\).\(\dfrac{12}{17}\) + \(\dfrac{-30}{23}\)
A = \(\dfrac{7}{23}\).(\(\dfrac{5}{17}\) + \(\dfrac{12}{17}\)) + \(\dfrac{-30}{23}\)
A = \(\dfrac{7}{23}\) - \(\dfrac{30}{23}\)
A = - 1
a: Xét ΔBHA vuông tại H và ΔBHC vuông tại H có
BA=BC
BH chung
Do đó: ΔBHA=ΔBHC
=>HA=HC
=>H là trung điểm của AC
mà BH\(\perp\)AC tại H
nên BH là đường trung trực của AC
b: Xét ΔEBC có
EM là đường cao
EM là đường trung tuyến
Do đó: ΔEBC cân tại E
=>EB=EC
ΔBHA=ΔBHC
=>\(\widehat{ABH}=\widehat{CBH}\)
Xét ΔBEA và ΔBEC có
BA=BC
\(\widehat{ABE}=\widehat{CBE}\)
BE chung
Do đó: ΔBEA=ΔBEC
=>EA=EC
mà EB=EC
nên EB=EA
=>ΔEBA cân tại E
c: Xét ΔMEB và ΔMKC có
ME=MK
\(\widehat{EMB}=\widehat{KMC}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔMEB=ΔMKC
=>\(\widehat{MEB}=\widehat{MKC}\)
=>EB//KC
=>KC\(\perp\)CA
Số người đủ cho mỗi thuyền 20 người nhiều hơn số người số người đủ cho mỗi thuyền 24 người là:
(người)
24 người nhiều hơn 20 người là:
(người)
Số thuyền là:
(thuyền)
Đơn vị có số người là:
(người)
Đáp số:10 thuyền và 216 người.
Đây là toán hai hiệu số, chuyên đề thi chuyên thi học sinh giỏi các cấp, thi violympic. Hôm nay Olm sẽ hướng dẫn các me giải chi tiết dạng này như sau:
Giải:
Hiệu số người mỗi thuyền trong hai cách chở là:
20 - 15 = 5 (người)
Hiệu số người trong hai cách chở là:
40 + 20 = 60 (người)
Số thuyền là: 60 : 5 = 12 (thuyền)
Số bộ đội của đơn vị cần qua sông là:
12 x 15 + 40 = 220 (bộ đội)
Đáp số:...
Vì \(x_1,x_2\) là 2 nghiệm của pt \(x^2-x-1=0\) nên:
\(x_1^2-x_1-1=x_2^2-x_2-1=0\)
Đồng thời, theo định lý Vi-ét, ta có:
\(x_1+x_2=1;x_1x_2=-1\)
Do đó \(B=\left(x_1^4-x_1^2\right)+x_2^2-x_1\)
\(B=x_1^2\left(x_1^2-1\right)+x_2^2-x_1\)
\(B=\left(x_1+1\right)x_1+x_2^2-x_1\)
\(B=x_1^2+x_2^2\)
\(B=\left(x_1+x_2\right)^2-2x_1x_2\)
\(B=1^2-2\left(-1\right)\)
\(B=3\)
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
=>\(\widehat{AMB}=\widehat{AMC}\)
mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)
nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)
=>AM\(\perp\)BC
b: Ta có: \(\widehat{ABD}+\widehat{ABC}=180^0\)(hai góc kề bù)
\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)
nên \(\widehat{ABD}=\widehat{ACE}\)
Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
a: Số học sinh toàn trường là:
60:15%=60:0,15=400(bạn)
b: Số học sinh khối 5 là:
400x22,5%=90(bạn)