K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2023

Ta có: \(\left(x^2+x-2\right)^2+2x^2+2x-4=0\)

\(\Leftrightarrow\left(x^2+x-2\right)^2+2\left(x^2+x-2\right)=0\)

\(\Leftrightarrow\left(x^2+x-2\right)\left(x^2+x-2+2\right)=0\)

\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=0\)

\(\Leftrightarrow x\left(x+1\right)\left(x^2+x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\\x^2+x-2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\\left(x-1\right)\left(x+2\right)=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=1\\x=-2\end{matrix}\right.\)

Vậy...

13 tháng 12 2023

 Bạn đặt ẩn phụ \(t=x^2+x-2\left(t\ge-\dfrac{9}{4}\right)\) thì pt thành \(t^2+2t=0\Leftrightarrow\left[{}\begin{matrix}t=0\\t=-2\end{matrix}\right.\) (nhận cả 2 nghiệm)

 Nếu \(t=0\Leftrightarrow x^2+x-2=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

 Nếu \(t=-2\Leftrightarrow x^2+x-2=-2\Leftrightarrow x^2+x=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

Vậy pt đã cho có tập nghiệm \(S=\left\{-2;-1;0;1\right\}\)

AH
Akai Haruma
Giáo viên
11 tháng 2

Lời giải;

Vế 1:

Áp dụng BĐT AM-GM:

$2=(x^2+y^2)(1+1)\geq (x+y)^2\Rightarrow x+y\leq \sqrt{2}$

$x^3+\frac{x}{2}\geq \sqrt{2}x^2$

$y^3+\frac{y}{2}\geq \sqrt{2}y^2$

$\Rightarrow x^3+y^3+\frac{x+y}{2}\geq \sqrt{2}(x^2+y^2)=\sqrt{2}$

$\Rightarrow x^3+y^3\geq \sqrt{2}-\frac{x+y}{2}\geq \sqrt{2}-\frac{\sqrt{2}}{2}=\frac{1}{\sqrt{2}}$

-----------------------

Vế 2:

$x^2+y^2=1$

$\Rightarrow x^2=1-y^2\leq 1\Rightarrow -1\leq x\leq 1$

$y^2=1-x^2\leq 1\Rightarrow -1\leq y\leq 1$

$\Rightarrow x^3\leq x^2; y^3\leq y^2$

$\Rightarrow x^3+y^3\leq x^2+y^2$ hay $x^3+y^3\leq 1$

DT
12 tháng 12 2023

loading... 

loading... 

1
AH
Akai Haruma
Giáo viên
6 tháng 2

Bạn cần bài nào bạn nên ghi chú rõ ra nhé.