K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2016

\(\Leftrightarrow-\frac{1}{6}< -\frac{1}{3}x+2< \frac{1}{6}\)

\(\Leftrightarrow\hept{\begin{cases}-\frac{1}{3}x+2>-\frac{1}{6}\\-\frac{1}{3}x+2< \frac{1}{6}\end{cases}\Leftrightarrow}\hept{\begin{cases}x< \frac{13}{2}\\x>\frac{11}{2}\end{cases}\Leftrightarrow\frac{11}{2}< x< \frac{13}{2}}\)

vậy

Xét 2 Th nha :

 Th1 : \(\left|-\frac{1}{3}x+2\right|< 0\)

PT trở thành : \(\frac{1}{3}x-2< \frac{1}{6}\)

\(\Rightarrow\frac{1}{3}x< \frac{13}{6}\)

\(\Rightarrow x< \frac{13}{2}\)

Th2 : \(\left|-\frac{1}{3}x+2\right|\ge0\)

\(\Rightarrow\frac{-1}{3}x+2< \frac{1}{6}\)

\(\Rightarrow\frac{-1}{3}x< \frac{-11}{6}\)

\(\Rightarrow x>\frac{11}{2}\)

Tự kết luận nha . Nhớ xét điều kiện nha

28 tháng 9 2016

\(2.x^2+5.x=12\)\(\Leftrightarrow2.x^2+5.x-12=0\Leftrightarrow2.x^2+8.x-3.x-12=0\)

\(\Leftrightarrow2.x\left(x+4\right)-3.\left(x+4\right)=0\Leftrightarrow\left(2.x-3\right).\left(x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2.x-3=0\\x+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=-4\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{-4;\frac{3}{2}\right\}\)

267 lớn hơn nhé

28 tháng 9 2016

\(2^{67}-5^{21}=1,475734758\times10^{20}\)

\(\Rightarrow2^{67}>5^{21}\)vì kết quả là dương

\(0.3\left(1983^{1983}+1917^{1917}\right)\)

\(=0\)

Vậy kết quả của phép tính trên là 1 số nguyên

28 tháng 9 2016

Muốn chứng tỏ 0,3 * (1983^1983 – 19171917) là số nguyên ta hãy chứng tỏ biểu thức 1983^1983 – 1917^1917 chia hết cho 10, hay nói cách khác biểu thức đó có kết quả là một số có chữ số tận cùng là 0.

Nhận thấy: 19834 có chữ số tận cùng bằng 1

19833 có chữ số tận cùng bằng 7

Nên 19831983 = (19834)495 * 19833 = 1983(4 * 495) + 3 có chữ số tận cùng là 7.

Nhận thấy 19174 có chữ số tận cùng bằng 1

Nên 19171917 = (19174)479 * 1917 có chữ số tận cùng là 7.

Do đó, hiệu số của biểu thức (19831983 – 19171917) sẽ có chữ số tận cùng là 0.

Vậy đáp số của phép tính 0,3 * (19831983 – 19171917) là số nguyên.

Lưu ý: Bài toán này có thể dùng nhị thức Newton để chứng minh đáp số của biểu thức