K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2015

có công cụ để ghi mà. bạn dùng cái đó nó dễ nhìn hơn. chứ thế này thì khó giải lắm

25 tháng 8 2016

1. Ta có:

 \(P=ax^3+bx^2+25x+5ax^2+5bx+125=ax^3+\left(b+5a\right)x^2+\left(25+5b\right)x+125\)

Vậy để P = Q thì \(\hept{\begin{cases}a=1\\b+5a=0\\25+5b=0\end{cases}\Rightarrow\hept{\begin{cases}a=1\\b=-5\end{cases}}}\)

2. Hoàn toàn tương tự.

15 tháng 6 2015

khi không có giá trị nào của biến để đa thức đạt giá trị bằng 0
 

15 tháng 6 2015

Đặt a=5x+1

b=5y+2

=>a.b=(5x+1)(5y+2)=25xy+10x+5y+2=5(5xy+2x+y)+2

Do 5(5xy+2x+y) chia hết cho 5

=>5(5xy+2x+y) + 2 chia 5 dư 2

Vậy a.b chia 5 dư 2

15 tháng 6 2015

a) \(\left(x^2-2xy+y^2\right)+\left(y^2+2y+1\right)=\left(x-y\right)^2+\left(y+1\right)^2\)

b) \(\left(z^2-6z+9\right)+\left(t^2+4t+4\right)=\left(z-3\right)^2+\left(t+2\right)^2\)

c) \(\left(4x^2-4xz+z^2\right)+\left(z^2-2z+1\right)=\left(4x-z\right)^2+\left(z-1\right)^2\)