Bài 1: Cho tam giác ABC vuông tại A.Đường cao AH.Gọi I,K lần lượt là hình chiếu của H trên cạnh AB và AC.M là trung điểm của BH.N là trung điểm của CH
a) Chứng minh IK đi qua trung điểm của HA
b) Chứng minh tứ giác MNKI là hình thang vuông.Tìm điều kiện của tam giác ABC để MNKI là hình chữ nhật
c) Gọi L là trung điểm của BC.Chứng minh rằng AL vuông góc với IK
d) Chứng minh rằng: Diện tích tứ giác MNKI bằng nửa diện tích tam giác ABC.Khi BC cố định,tam giác vuông ABC cần thêm điều kiện gì để diện tích tứ giác MNKI là lớn nhất
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
27 tháng 10 2016
Ta có: \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
\(2x=z\Rightarrow\frac{x}{1}=\frac{z}{2}\)
\(\frac{x}{2}=\frac{y}{3};\frac{x}{1}=\frac{z}{2}\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y +z}{2+3+4}=\frac{27}{9}=3\)
Vậy x = 3 x2 = 6
y = 3 x 3 = 9
z = 3 x 4 = 12
27 tháng 10 2016
Ta có : z=2x
Thay vào ta có x+y+z=27
x+y+2x=27
3x+y=27 (1)
3x=2y => 3x-2y=0 (2)
giải pt (1) và (2) trên máy tính ta được: x=6 , y=9
27 tháng 10 2016
Giá trị tuyệt đối của 1 số luôn lớn hơn 0
=>/2Y+7,4/+6,2+/-X+2,1/\(\ge\) 0+6,2+0=6,2
GTNN của A là 6,2 khi 2Y+7,4=0 ( Y=3,7) và /-X+2,1/=0 ( X=2,1)
đáp án 0,75