Cho tam giác ABC vuông tại A ( AB<AC). Trên tia đối của tia AB lấy E sao cho AB = AE. Kẻ phân giác BD (DEAC). Từ D Kẻ DH vuông góc RC
(H Thuộc BC)
a. Cm tam giác ABD=tam giác HBD
b, CA là tia phân giác của góc BCE
c.So sánh DE và DC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do ∆ABC cân tại A (gt)
⇒ AB = AC
Xét hai tam giác vuông: ∆AHB và ∆AHC có:
AH là cạnh chung
AB = AC (cmt)
⇒ ∆AHB = ∆AHC (cạnh huyền - cạnh góc vuông)
b) Do BN là đường trung tuyến của ∆ABC (gt)
⇒ N là trung điểm của AC
⇒ AN = CN
Do AH // CK (gt)
⇒ ∠IAN = ∠KCN (so le trong)
Xét ∆AIN và ∆CKN có:
∠ANI = ∠CNK (đối đỉnh)
AN = CN (cmt)
∠IAN = ∠KCN (cmt)
⇒ ∆AIN = ∆CKN (g-c-g)
⇒ NI = NK (hai cạnh tương ứng)
c) Xem lại đề. Em viết sai tùm lum
Ta thấy: \(\left\{{}\begin{matrix}\left(3x-2\right)^{2022}\ge0;\forall x\\\left(5y+4\right)^{2024}\ge0;\forall y\end{matrix}\right.\)
\(\Rightarrow\left(3x-2\right)^{2022}+\left(5y+4\right)^{2024}\ge0;\forall x,y\)
\(\Rightarrow\left(3x-2\right)^{2022}+\left(5y+4\right)^{2024}+2023\ge2023;\forall x,y\)
\(\Rightarrow C\ge2023;\forall x,y\)
Dấu \("="\) xảy ra khi: \(\left\{{}\begin{matrix}3x-2=0\\5y+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-\dfrac{4}{5}\end{matrix}\right.\)
Vậy \(C_{min}=2023\) tại \(x=\dfrac{2}{3};y=-\dfrac{4}{5}\).
Sửa đề: \(\left(4x^4+14x^3-21x-9\right):\left(2x^2-3\right)\)
\(=\left(4x^4+14x^3+6x^2-6x^2-21x-9\right):\left(2x^2-3\right)\)
\(=\left[\left(4x^4-6x^2\right)+\left(14x^3-21x\right)+\left(6x^2-9\right)\right]:\left(2x^2-3\right)\)
\(=\left[2x^2.\left(2x^2-3\right)+7x.\left(2x^2-3\right)+3.\left(2x^2-3\right)\right]:\left(2x^2-3\right)\)
\(=\left(2x^2+7x+3\right).\left(2x^2-3\right):\left(2x^2-3\right)\)
\(=2x^2+7x+3\)
___________________
\(\left(6x^3-2x^2-9x+3\right):\left(3x-1\right)\)
\(=\left[\left(6x^3-2x^2\right)-\left(9x-3\right)\right]:\left(3x-1\right)\)
\(=\left[2x^2.\left(3x-1\right)-3.\left(3x-1\right)\right]:\left(3x-1\right)\)
\(=\left(2x^2-3\right).\left(3x-1\right):\left(3x-1\right)\)
\(=2x^2-3\)
`#NqHahh`
Lời giải:
Với $n$ nguyên, để $\frac{3n+2}{4n-5}$ là số nguyên thì:
$3n+2\vdots 4n-5$
$\Rightarrow 4(3n+2)\vdots 4n-5$
$\Rightarrow 12n+8\vdots 4n-5$
$\Rightarrow 3(4n-5)+23\vdots 4n-5$
$\Rightarrow 23\vdots 4n-5$
Với $n$ nguyên $\Rightarrow 4n-5\in Ư(23)$
$\Rightarrow 4n-5\in \left\{-1; -23; 1; 23\right\}$
$\Rightarrow n\in \left\{1; -4,5; 1,5; 7\right\}$
Vì $n$ nguyên nên $n\in\left\{1; 7\right\}$
Bài 4:
a: Dấu hiệu ở đây là số lỗi chính tả trong mỗi bài tiếng Anh của các bạn lớp 7A
b: Có 40 bạn làm bài kiểm tra
c: Bảng tần số:
Số lỗi | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Số bạn | 6 | 6 | 8 | 6 | 5 | 1 | 3 | 2 | 3 |
Nhận xét:
-Đa số các bạn đều sai từ 1 đến 4 lỗi
-Số bạn sai 6 lỗi là ít nhất(1 bạn)
-Số bạn sai 3 lỗi là nhiều nhất(8 bạn)
d: Trung bình cộng là:
\(\overline{X}=\dfrac{1\cdot6+2\cdot6+3\cdot8+4\cdot6+5\cdot5+6\cdot1+7\cdot3+8\cdot2+9\cdot3}{40}\)
=>\(\overline{X}=\dfrac{161}{40}\)
Mốt của dấu hiệu là 3
Bài 9:
a: \(A=\left(\dfrac{1}{3}-\dfrac{8}{15}-\dfrac{1}{7}\right)+\left(\dfrac{2}{3}+\dfrac{-7}{15}+1\dfrac{1}{7}\right)\)
\(=\dfrac{1}{3}-\dfrac{8}{15}-\dfrac{1}{7}+\dfrac{2}{3}+\dfrac{-7}{15}+\dfrac{8}{7}\)
\(=\left(\dfrac{1}{3}+\dfrac{2}{3}\right)+\left(-\dfrac{8}{15}-\dfrac{7}{15}\right)+\left(-\dfrac{1}{7}+\dfrac{8}{7}\right)\)
\(=1-1+1=1\)
b: \(B=0,25+\dfrac{3}{5}-\left(\dfrac{1}{8}-\dfrac{2}{5}+1\dfrac{1}{4}\right)\)
\(=0,25+\dfrac{3}{5}-\dfrac{1}{8}+\dfrac{2}{5}-1,25\)
\(=\left(\dfrac{3}{5}+\dfrac{2}{5}\right)+\left(0,25-1,25\right)-\dfrac{1}{8}\)
\(=1-1-\dfrac{1}{8}=-\dfrac{1}{8}\)
c: \(C=\dfrac{3}{4}-\dfrac{4}{5}+\dfrac{5}{6}-\dfrac{6}{7}+\dfrac{7}{8}+\dfrac{6}{7}-\dfrac{5}{6}+\dfrac{4}{5}-\dfrac{3}{4}\)
\(=\left(\dfrac{3}{4}-\dfrac{3}{4}\right)+\left(-\dfrac{4}{5}+\dfrac{4}{5}\right)+\left(\dfrac{5}{6}-\dfrac{5}{6}\right)+\left(-\dfrac{6}{7}+\dfrac{6}{7}\right)+\dfrac{7}{8}\)
\(=0+0+0+0+\dfrac{7}{8}=\dfrac{7}{8}\)
d: \(D=\left(2025-\dfrac{5}{181}+\dfrac{1}{50}\right)-\left(4+\dfrac{3}{181}-\dfrac{2}{50}\right)-\left(1-\dfrac{8}{181}+\dfrac{3}{50}\right)\)
\(=2025-\dfrac{5}{181}+\dfrac{1}{50}-4-\dfrac{3}{181}+\dfrac{2}{50}-1+\dfrac{8}{181}-\dfrac{3}{50}\)
\(=2025-4-1=2020\)
a: \(\dfrac{-3}{4}+\left(3-\dfrac{1}{4}\right)-\left(2,25-\dfrac{9}{4}\right)\)
\(=-\dfrac{3}{4}+3-\dfrac{1}{4}-\left(2,25-2,25\right)\)
\(=-1+3=2\)
b: \(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{23}+\dfrac{1}{6}\)
\(=\dfrac{1}{2}+\dfrac{1}{6}-\dfrac{1}{3}+\dfrac{1}{23}\)
\(=\dfrac{3+1-2}{6}+\dfrac{1}{23}\)
\(=\dfrac{1}{3}+\dfrac{1}{23}=\dfrac{26}{69}\)
c: \(\left(-\dfrac{13}{7}-\dfrac{4}{9}\right)-\left(-\dfrac{10}{7}-\dfrac{4}{9}\right)\)
\(=-\dfrac{13}{7}-\dfrac{4}{9}+\dfrac{10}{7}+\dfrac{4}{9}\)
\(=-\dfrac{13}{7}+\dfrac{10}{7}=-\dfrac{3}{7}\)
d: \(\dfrac{-14}{12}+0,65-\left(-\dfrac{7}{42}-0,35\right)\)
\(=-\dfrac{7}{6}+0,65+0,35+\dfrac{7}{42}\)
\(=\dfrac{-49}{42}+\dfrac{7}{42}+1=-\dfrac{42}{42}+1=0\)
e: \(\left(\dfrac{7}{8}-\dfrac{5}{2}+\dfrac{4}{7}\right)-\left(-\dfrac{3}{7}+1-\dfrac{13}{8}\right)\)
\(=\dfrac{7}{8}-\dfrac{5}{2}+\dfrac{4}{7}+\dfrac{3}{7}-1+\dfrac{13}{8}\)
\(=\dfrac{20}{8}-\dfrac{5}{2}=\dfrac{5}{2}-\dfrac{5}{2}=0\)
f: \(\dfrac{-3}{7}+\left(3-\dfrac{3}{4}\right)-\left(2,25-\dfrac{10}{7}\right)\)
\(=-\dfrac{3}{7}+2,25-2,25+\dfrac{10}{7}\)
\(=\dfrac{10}{7}-\dfrac{3}{7}=\dfrac{7}{7}=1\)
g: \(\dfrac{1}{2}-\dfrac{43}{101}+\left(-\dfrac{1}{3}\right)-\dfrac{1}{6}\)
\(=\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{6}\right)-\dfrac{43}{101}\)
\(=\left(\dfrac{3}{6}-\dfrac{2}{6}-\dfrac{1}{6}\right)-\dfrac{43}{101}=0-\dfrac{43}{101}=-\dfrac{43}{101}\)
h: \(\left(\dfrac{5}{3}-\dfrac{3}{7}+9\right)-\left(2+\dfrac{5}{7}-\dfrac{2}{3}\right)+\left(\dfrac{8}{7}-\dfrac{4}{3}-10\right)\)
\(=\dfrac{5}{3}-\dfrac{3}{7}+9-2-\dfrac{5}{7}+\dfrac{2}{3}+\dfrac{8}{7}-\dfrac{4}{3}-10\)
\(=\left(\dfrac{5}{3}+\dfrac{2}{3}-\dfrac{4}{3}\right)+\left(-\dfrac{3}{7}-\dfrac{5}{7}+\dfrac{8}{7}\right)+\left(9-2-10\right)\)
\(=\dfrac{2}{3}-3=-\dfrac{7}{3}\)
i: \(\dfrac{1}{2}+\dfrac{5}{6}-\dfrac{1}{3}=\dfrac{3}{6}+\dfrac{5}{6}-\dfrac{2}{6}=\dfrac{5+1}{6}=\dfrac{6}{6}=1\)
k: \(\dfrac{1}{2}-\left[\dfrac{3}{8}+\left(-\dfrac{7}{4}\right)\right]\)
\(=\dfrac{1}{2}-\dfrac{3}{8}+\dfrac{7}{4}\)
\(=\dfrac{4}{8}-\dfrac{3}{8}+\dfrac{14}{8}=\dfrac{15}{8}\)
\(\dfrac{x+1}{3}=\dfrac{y-2}{4}=\dfrac{z-1}{13}\)
=>\(\dfrac{2x+2}{6}=\dfrac{3y-6}{12}=\dfrac{z-1}{13}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x+2}{6}=\dfrac{3y-6}{12}=\dfrac{z-1}{13}=\dfrac{2x-3y+z+2+6-1}{6-12+13}=\dfrac{21+2+5}{7}=4\)
=>\(\left\{{}\begin{matrix}x+1=3\cdot4=12\\y-2=4\cdot4=16\\z-1=13\cdot4=52\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=11\\y=18\\z=53\end{matrix}\right.\)
Lời giải:
$N=\frac{2}{2}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2019}{2^{2018}}$
$2N=2+\frac{3}{2}+\frac{4}{2^2}+....+\frac{2019}{2^{2017}}$
$\Rightarrow 2N-N=2+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2017}}-\frac{2019}{2^{2018}}$
$\Rightarrow N+\frac{2019}{2^{2018}}=2+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2017}}$
$\Rightarrow 2(N+\frac{2019}{2^{2018}})=4+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}$
$\Rightarrow 2(N+\frac{2019}{2^{2018}})-(N+\frac{2019}{2^{2018}})=3-\frac{1}{2^{2017}}$
$\Rightarrow N+\frac{2019}{2^{2018}}=3-\frac{1}{2^{2017}}$
$N=3-\frac{1}{2^{2017}}-\frac{2019}{2^{2018}}=3-\frac{2021}{2^{2018}}$
Hiển nhiên $\frac{2021}{2^{2018}}$ không phải số nguyên nên $N$ không là số nguyên.
a: Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔBAD=ΔBHD
b: Xét ΔCAB vuông tại A và ΔCAE vuông tại A có
CA chung
AB=AE
Do đó: ΔCAB=ΔCAE
=>\(\widehat{ACB}=\widehat{ACE}\)
=>CA là phân giác của góc ECB