K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBME vuông tại M và ΔBOA vuông tại O có

\(\widehat{MBE}\) chung

Do đó: ΔBME~ΔBOA

b: Xét ΔAMN vuông tại M và ΔAOB vuông tại O có

\(\widehat{MAN}\) chung

Do đó: ΔAMN~ΔAOB

=>\(\dfrac{AM}{AO}=\dfrac{AN}{AB}\)

=>\(AM\cdot AB=AN\cdot AO\)

c: \(\dfrac{AM}{AO}=\dfrac{AN}{AB}\)

=>\(\dfrac{AM}{AN}=\dfrac{AO}{AB}\)

Xét ΔAMO và ΔANB có

\(\dfrac{AM}{AN}=\dfrac{AO}{AB}\)

\(\widehat{MAO}\) chung

Do đó: ΔAMO~ΔANB

=>\(\widehat{AOM}=\widehat{ABN}\)

Xét ΔAEB có

AO,EM là các đường cao

AO cắt EM tại N

Do đó: N là trực tâm của ΔAEB

=>BN\(\perp\)AE tại F

Xét ΔAFN vuông tại F và ΔAOE vuông tại O có

\(\widehat{FAN}\) chung

Do đó: ΔAFN~ΔAOE

=>\(\dfrac{AF}{AO}=\dfrac{AN}{AE}\)

=>\(\dfrac{AF}{AN}=\dfrac{AO}{AE}\)

Xét ΔAFO và ΔANE có

\(\dfrac{AF}{AN}=\dfrac{AO}{AE}\)

\(\widehat{FAO}\) chung

Do đó: ΔAFO~ΔANE

=>\(\widehat{AOF}=\widehat{AEN}\)

mà \(\widehat{AOM}=\widehat{ABN}\)

và \(\widehat{AEN}=\widehat{ABN}\left(=90^0-\widehat{FAB}\right)\)

nên \(\widehat{AOF}=\widehat{AOM}\)

=>OA là phân giác của góc FOM

Gọi mẫu số là x

Tử số là x+8

Tử số sau khi giảm 1 đơn vị là x+8-1=x+7

Mẫu số sau khi thêm 3 đơn vị là x+3

Phân số mới là 3/2 nên \(\dfrac{x+7}{x+3}=\dfrac{3}{2}\)

=>3(x+3)=2(x+7)

=>3x+9=2x+14

=>x=5

vậy: Phân số cần tìm là \(\dfrac{5+8}{5}=\dfrac{13}{5}\)

a: Xét ΔHAC vuông tại H và ΔABC vuông tại A có

\(\widehat{HCA}\) chung

Do đó: ΔHAC~ΔABC

b ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

ΔHAC~ΔABC

=>\(\dfrac{HA}{AB}=\dfrac{AC}{BC}=\dfrac{HC}{AC}\)

=>\(\dfrac{HA}{12}=\dfrac{HC}{16}=\dfrac{16}{20}=\dfrac{4}{5}\)

=>\(HA=12\cdot\dfrac{4}{5}=9,6\left(cm\right);HC=16\cdot\dfrac{4}{5}=12,8\left(cm\right)\)

HB+HC=BC

=>HB+12,8=20

=>HB=7,2(cm)

c: Sửa đề: \(AD\cdot AB=AE\cdot AC\)

Xét ΔADH vuông tại Dvà ΔAHB vuông tại H có

\(\widehat{DAH}\) chung

Do đó: ΔADH~ΔAHB

=>\(\dfrac{AD}{AH}=\dfrac{AH}{AB}\)

=>\(AH^2=AD\cdot AB\left(1\right)\)

Xét ΔAEH vuông tại Evà ΔAHC vuông tại H có

\(\widehat{EAH}\) chung

Do đó: ΔAEH~ΔAHC

=>\(\dfrac{AE}{AH}=\dfrac{AH}{AC}\)

=>\(AH^2=AE\cdot AC\left(2\right)\)

Từ (1),(2) suy ra \(AD\cdot AB=AE\cdot AC\)

Ta có: \(AE=\dfrac{AB}{2}\)

\(CK=\dfrac{CD}{2}\)

mà AB=CD

nên AE=CK

Xét tứ giác AECK có

AE//CK

AE=CK

Do đó: AECK là hình bình hành

=>CE//AK

Câu 42:

Tỉ số hai chu vi của hai tam giác MNP và ABC là 5/2

=>\(\dfrac{MN}{AB}=\dfrac{NP}{BC}=\dfrac{MP}{AC}=\dfrac{5}{2}\)

=>\(\dfrac{MN}{5}=\dfrac{NP}{10}=\dfrac{MP}{7,5}=\dfrac{5}{2}\)

=>\(MN=5\cdot\dfrac{5}{2}=12,5\left(cm\right);NP=10\cdot\dfrac{5}{2}=25\left(cm\right);MP=7,5\cdot\dfrac{5}{2}=18,75\left(cm\right)\)

Câu 40:

Gọi độ dài quãng đường AB là x(km)

(Điều kiện: x>0)

Thời gian người đó đi từ A đến B là \(\dfrac{x}{40}\left(giờ\right)\)

Thời gian người đó đi từ B về A là \(\dfrac{x}{50}\left(giờ\right)\)

Thời gian đi nhiều hơn thời gian về 45p=0,75 giờ nên ta có:

\(\dfrac{x}{40}-\dfrac{x}{50}=0,75\)

=>\(\dfrac{x}{200}=0,75\)

=>\(x=200\cdot0,75=150\left(nhận\right)\)

Vậy: Độ dài quãng đường AB là 150km

25 tháng 4 2024

Bạn hỏi toán thì hỏi luôn đi cho lẹ ,còn tào lao nữa?

25 tháng 4 2024

phụ nư = thần tiên = tiền thân=trước khỉ : trong 12 con giáp trước khỉ là dê

a: Xét ΔBHA vuông tại H và ΔBAC vuông tại A có

\(\widehat{HBA}\) chung

Do đó: ΔBHA~ΔBAC

=>\(\dfrac{BH}{BA}=\dfrac{BA}{BC}\)

=>\(BA^2=BH\cdot BC\)

b: Xét ΔBDA vuông tại D và ΔBAM vuông tại A có

\(\widehat{DBA}\) chung

Do đó: ΔBDA~ΔBAM

=>\(\dfrac{BD}{BA}=\dfrac{BA}{BM}\)

=>\(BD\cdot BM=BA^2\)

=>\(BD\cdot BM=BH\cdot BC\)

=>\(\dfrac{BD}{BC}=\dfrac{BH}{BM}\)

Xét ΔBDH và ΔBCM có

\(\dfrac{BD}{BC}=\dfrac{BH}{BM}\)

\(\widehat{DBH}\) chung

Do đó: ΔBDH~ΔBCM

c: Xét ΔMDA vuông tại D và ΔMAB vuông tại A có

\(\widehat{DMA}\) chung

Do đó: ΔMDA~ΔMAB

=>\(\dfrac{MD}{MA}=\dfrac{MA}{MB}\)

=>\(MD\cdot MB=MA^2=MC^2\)

Chọn B

25 tháng 4 2024

a) xét tam giác ABC và tam giác HBA, có

 góc B chung

 góc BAC = góc AHB (=90o)

=> tg ABC ~ tg HBA (g-g)

=>AB/BC =HB/AB ( tỉ số đồng dạng)

b) xét tg ABC có

BC2 = AB2 +AC2 ( định lí Pythagore)

BC^2 = 9^2 + 12^2

BC^2 = 81 + 144

BC = căn 225

=>BC = 15 cm

diện tích tg ABC là

S = AB.AC = (9.12):2 = 54 cm2

chiều dài AH là 

AH = (S : BC).2= 9 cm

c) có: AB/BC =HB/AB(cmt)

=> AB2=HB.BC (đpcm)

cho mình xin ý kiến nhá :333

 

NV
25 tháng 4 2024

Hai đường thẳng đã cho song song khi:

\(\left\{{}\begin{matrix}2-3m=2\\5\ne5\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn yêu cầu