1 Thu gọn biểu thức
D = 5 + 52 + 53 + ... + 5100
2 So sánh
a) 544 và 2112
b) 339 và 1121
c) 20160 và 39845
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
25 = 22.23 < 22.32 = 62 = 22.32 < 32.32 < 35
Vậy 25 < 62 < 35 (đpcm)
Tỉ số của tam giác CMB trên tam giác ABC là: \(\dfrac{CMB}{ABC}=\dfrac{MB}{AB}=\dfrac{1}{2}\)
Diện tích tam giác CMB là: \(\dfrac{1}{2}\cdot60=30\)
Tỉ số của CD trên BC là : \(\dfrac{CD}{BC}=\dfrac{CMD}{CMB}=\dfrac{10}{30}=\dfrac{1}{3}\)
Đ/S 1/3
\(a.\left[x\cdot\left(x+1\right)\right]:2=136\\ x\cdot\left(x+1\right)=136\cdot2\\ x\cdot\left(x+1\right)=2\cdot2\cdot2\cdot17\cdot2\\ x\cdot\left(x+1\right)=\left(2\cdot2\cdot2\cdot2\right)\cdot17\\ x\cdot\left(x+1\right)=16\cdot17\\ =>x=16\\ b.\left[x\cdot\left(x+1\right)\right]:2=300\\ x\cdot\left(x+1\right)=3\cdot2\cdot2\cdot5\cdot5\cdot2\\ x\cdot\left(x+1\right)=\left(3\cdot2\cdot2\cdot2\right)\cdot\left(5\cdot5\right)\\ x\cdot\left(x+1\right)=24\cdot25\\ =>x=24\\ c.\left[x\cdot\left(x+1\right)\right]:2=561\\ x\cdot\left(x+1\right)=2\cdot3\cdot11\cdot17\\ x\cdot\left(x+1\right)=\left(17\cdot2\right)\cdot\left(3\cdot11\right)\\ x\cdot\left(x+1\right)=34\cdot33\\ =>x=33\)
\(x\cdot\left(x+1\right):2=153\)
\(\Rightarrow x\left(x+1\right)=153\cdot2\)
\(\Rightarrow x^2+x=306\)
\(\Rightarrow x^2+x-306=0\)
\(\Rightarrow x^2+18x-17x-306=0\)
\(\Rightarrow x\left(x+18\right)-17\left(x+18\right)=0\)
\(\Rightarrow\left(x-17\right)\left(x+18\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=17\\x=-18\end{matrix}\right.\)
\(x\left(x+1\right)=156\)
\(\Rightarrow x^2+x=156\)
\(\Rightarrow x^2+x-156=0\)
\(\Rightarrow x^2+13x-12x-156=0\)
\(\Rightarrow x\left(x+13\right)-12\left(x+13\right)=0\)
\(\Rightarrow\left(x+13\right)\left(x-12\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=12\\x=-13\end{matrix}\right.\)
___________________
\(x\left(x+1\right)=342\)
\(\Rightarrow x^2+x=342\)
\(\Rightarrow x^2+x-342=0\)
\(\Rightarrow x^2+19x-18x-342=0\)
\(\Rightarrow x\left(x+19\right)-18\left(x+19\right)=0\)
\(\Rightarrow\left(x+19\right)\left(x-18\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-19\\x=18\end{matrix}\right.\)
__________________
\(x\left(x+1\right)=650\)
\(\Rightarrow x^2+x=650\)
\(\Rightarrow x^2-x+650=0\)
\(\Rightarrow x^2+26x-25x-650=0\)
\(\Rightarrow x\left(x+26\right)-25\left(x+26\right)=0\)
\(\Rightarrow\left(x+26\right)\left(x-25\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-26\\x=25\end{matrix}\right.\)
______________________
\(x\left(x+1\right)=380\)
\(\Rightarrow x^2+x=380\)
\(\Rightarrow x^2+x-380=0\)
\(\Rightarrow x^2+20x-19x-380=0\)
\(\Rightarrow x\left(x+20\right)-19\left(x+20\right)=0\)
\(\Rightarrow\left(x+20\right)\left(x-19\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-20\\x=19\end{matrix}\right.\)
a, \(x\).(\(x\) + 1) = 156
156 = 22.3.13 = 12.13
Vậy \(x\).(\(x\) + 1) = 12.13
Vậy \(x\) = 12
b, \(x.\)(\(x\) + 1) = 342
342 = 2.32.19 = 18.19
\(x\).(\(x+1\)) = 18.19
\(x\) = 18
c, \(x\).(\(x\) + 1) = 650
650 = 2.52.13 = 25.26
\(x\).(\(x\) +1) = 25.26
\(x\) = 25
d, \(x\).(\(x\) +1) = 380
380 = 22.5.19 = 19.20
\(x\).(\(x\) + 1) = 19.20
\(x\) = 19
\(\dfrac{15}{90}\) = \(\dfrac{1}{6}\) = \(\dfrac{1.5}{6.5}\) = \(\dfrac{5}{30}\)
\(\dfrac{120}{600}\) = \(\dfrac{1}{5}\) = \(\dfrac{1.6}{5.6}\) = \(\dfrac{6}{30}\)
\(\dfrac{75}{150}\) = \(\dfrac{1}{2}\) = \(\dfrac{1.15}{2.15}\) = \(\dfrac{15}{30}\)
Ta có:
\(\dfrac{15}{90}=\dfrac{1}{6};\dfrac{120}{600}=\dfrac{1}{5};\dfrac{75}{150}=\dfrac{1}{2}\)
\(\Rightarrow MSC\) là: \(60\)
\(\dfrac{1}{6}=\dfrac{1.10}{6.10}=\dfrac{10}{60}\)
\(\dfrac{1}{5}=\dfrac{1.12}{5.12}=\dfrac{12}{60}\)
\(\dfrac{1}{2}=\dfrac{1.30}{2.30}=\dfrac{30}{60}\)
Ta có:
\(\dfrac{54}{90}=\dfrac{3}{5}\)
\(\dfrac{180}{288}=\dfrac{5}{8}\)
\(\dfrac{60}{135}=\dfrac{4}{9}\)
Mẫu số chung là: 360
\(\dfrac{3}{5}=\dfrac{3.72}{5.72}=\dfrac{216}{360}\)
\(\dfrac{5}{8}=\dfrac{5.45}{8.45}=\dfrac{225}{360}\)
\(\dfrac{4}{9}=\dfrac{4.40}{9.40}=\dfrac{160}{360}\)
Diện tích tam giác là
Nối với Theo giả thiết ta có
Từ đó cũng có
1) \(D=5+5^2+5^3+...+5^{100}\)
\(\Rightarrow D+1=1+5+5^2+5^3+...+5^{100}\)
\(\Rightarrow D+1=\dfrac{5^{100+1}-1}{5-1}\)
\(\Rightarrow D+1=\dfrac{5^{101}-1}{4}\)
\(\Rightarrow D=\dfrac{5^{101}-1}{4}-1=\dfrac{5^{101}-5}{4}=\dfrac{5\left(5^{100}-1\right)}{4}\)
2)
a) \(21^{12}=\left(21^3\right)^4=9261^4>54^4\Rightarrow54^4< 21^{12}\)
b) \(3^{39}< 3^{40}=\left(3^2\right)^{20}=9^{20}< 11^{20}< 11^{21}\)
\(\Rightarrow3^{39}< 11^{21}\)
c) \(201^{60}=\left(201^4\right)^{15}=\text{1632240801}^{15}\)
\(398^{45}=\left(398^3\right)^{15}=\text{63044792}^{15}< \text{1632240801}^{15}\)
\(201^{60}>398^{45}\)