xài Dirichlet mới hay :)
Cho a,b,c là các số thực không âm bất kì. Chứng minh rằng :
a2 + b2 + c2 + 2abc + 1 ≥ 2( ab + bc + ca )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Thay \(x=16\)vào B ta đc
\(\frac{16-\sqrt{16}}{\sqrt{16}-2}=6\)
Vậy B =6 với x=16
2)\(A=\frac{\sqrt{x}+1}{\sqrt{x}+2}+\frac{\sqrt{x}}{2-\sqrt{x}}-\frac{2\sqrt{x}+8}{x-4}\)
\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{x-4}-\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{x-4}-\frac{2\sqrt{x}+8}{x-4}\)
\(=\frac{x-\sqrt{x}-2}{x-4}-\frac{x+2\sqrt{x}}{x-4}-\frac{2\sqrt{x}+8}{x-4}\)
\(=\frac{-5\sqrt{x}-10}{x-4}\)
\(=\frac{-5\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{-5}{\sqrt{x}-2}\)
3) Để \(B-A< 0\)\(\Leftrightarrow\frac{x-\sqrt{x}}{\sqrt{x}-2}-\frac{-5}{\sqrt{x}-2}< 0\)
\(\Leftrightarrow\frac{x-\sqrt{x}+5}{\sqrt{x}-2}< 0\)
\(\Leftrightarrow\hept{\begin{cases}x-\sqrt{x}+5>0\\\sqrt{x}-2< 0\end{cases}}\)( vì \(x-\sqrt{x}+5>0;\forall x\))
\(\Leftrightarrow x< 4\) Kết hợp với điều kiện đề bài
\(\Rightarrow0\le x< 4\) Mà x nguyên
\(\Rightarrow x\in\left\{0;1;2;3\right\}\)
Vậy ...
Lời giải:
a) Gọi H là giao điểm của OC và AB, ΔAOB cân tại O (OA = OB, bán kính). OH là đường cao nên cũng là đường phân giác. Do đó:
Suy ra: CB vuông góc với OB, mà OB là bán kính của đường tròn (O)
⇒ CB là tiếp tuến của đường tròn (O) tại B. (điều phải chứng minh)
b) Ta có: OH vuông góc AB nên H là trung điểm của AB (quan hệ vuông góc giữa đường kính và dây)
Vậy OC = 25 cm
Tâm là giao điểm của đường vuông góc với tại và đường trung trực của . Dựng đường tròn .
Đường tròn (O) tiếp xúc với d nên d là tiếp tuyến của (O) hay d vuông góc với bán kính của (O) tại tiếp điểm A. Suy ra tâm O của đường tròn nằm trên đường thẳng vuông góc với d tại A.
Lại có (O) qua B nên tâm O của đường tròn nằm trên đường trung trực của AB.
Vậy tâm O là giao điểm của đường vuông góc với d tại A và đường trung trực của AB.Tam giác có:
Mặt khác:
Vậy .
Do đó (định lí Py-ta-go đảo).
vuông góc với bán kính tại nên là tiếp tuyến của đường tròn .
\(=\sqrt{64}=8\left(cm\right)\)
Áp dụng định lý Pytago vào tam giác AOB vuông tại B, ta có:
AB=\(\sqrt{AO^2-OB^2}=\sqrt{10^2-6^2}\)\(=\sqrt{64}=8\left(cm\right)\)
a) vẽ bạn tự vẽ nha
b) Xét pt hoành độ giao điểm chung của (d) và (P) ta có:
\(\frac{1}{4}x^2=x+m\)
\(\Leftrightarrow x^2-4x-4m=0\left(1\right)\)
\(\Delta^,=4+4m\)
Để (d) tiếp xúc với (P) \(\Leftrightarrow\Delta^,=0\)
\(\Leftrightarrow4+4m=0\)
\(\Leftrightarrow m=-1\)
Thay m=-1 vào pt (1) ta được :
\(x^2-4x+4=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x=2\)
\(\Rightarrow y=\frac{1}{4}.2^2=1\)
Gọi tọa độ tiếp điểm của (d) tiếp xúc với (P) là A(x,y)
=> tọa độ tiếp điểm là \(A\left(2;1\right)\)
Dirichlet à:))?
Trong 3 số dương a,b,c tồn tại ít nhất 2 số cùng nhỏ hơn hoặc không nhỏ hơn 1
G/s 2 số đó là a và b
Khi đó: \(\left(1-a\right)\left(1-b\right)\ge0\Leftrightarrow ab-a-b+1\ge0\)
\(\Leftrightarrow ab\ge a+b-1\Leftrightarrow2abc\ge2ca+2bc-2c\)
\(\Rightarrow a^2+b^2+c^2+2abc+1\ge a^2+b^2+c^2+2ca+2bc-2c+1\)
Mà \(\left(a^2+b^2+c^2+2ca+2bc-2c+1\right)-2\left(ab+bc+ca\right)\)
\(=\left(a^2-2ab+b^2\right)+\left(c^2-2c+1\right)=\left(a-b\right)^2+\left(c-1\right)^2\ge0\left(\forall a,b,c\right)\)
\(\Rightarrow a^2+b^2+c^2+2ca+2bc-2c+1\ge2\left(ab+bc+ca\right)\)
\(\Rightarrow a^2+b^2+c^2+2abc+1\ge2\left(ab+bc+ca\right)\)
Dấu "=" xảy ra khi: a = b = c = 1
Theo nguyên lý Dirichlet, ta thấy rằng trong ba số a,b,c sẽ có hai số hoặc cùng ≥1 hoặc cùng ≤1. Giả sử hai số đó là a,b khi đó:
(a−1)(b−1)≥0.
Từ đây, bằng cách sử dụng hằng đẳng thức:
a2+b2+c2+2abc+1−2(ab+bc+ca)=(a−b)2+(c−1)2+2c(a−1)(b−1)≥0
Ta thu được ngay bất đẳng thức (1), phép chứng minh hoàn tất.
Search mạng!!