K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2017

Dùng súng lục: "siêu tôc thần sầu" không đủ công lực tiếp nhận

\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a+b+c\right)=\left(\frac{a}{a}+\frac{b}{b}+\frac{c}{c}\right)+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\\ \)

 nhân phân phối bình thường ra thôi : \(t+\frac{1}{t}\ge2\)khi t>0 đẳng thức khi t=1

Áp vào trên => VT>=(1+1+1)+(2+2+2)=9

thay a+b+c=6 =>\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{6}=\frac{3}{2}\) =>dpcm

đẳng thúc khi t=1=> a/b=b/c=a/c=> a=b=c 

a+b+c=6=> a=b=c=2

17 tháng 1 2017

AD quy tắc tìm số cuối

17 tháng 1 2017

mình không bt sorry bn

17 tháng 1 2017

Số 8 nha bạn cách làm mình sẽ giải sau 

17 tháng 1 2017

cảm ơn bạn 

17 tháng 1 2017

a, x^3 + y^3 + z^3 = (x+y)^3 - 3xy(x+y) + z^3

                            = (x+y+z)[(x+y)^2 - (x+y)z + z^2] - 3xy(x+y)

                            = -3xy(x+y)                                 (do x+y+z=0)

            Vì x+y+z=0  =>x+y=-z

=> -3xy(x+y)=3xyz

 Bài này có nhiều cách giải bạn cũng có thể dựa vào x+y+z=0 => x=-(y+z),....... rồi thay vào

   Và sau này khi giải các bài toán thì bạn có thể AD: Nếu x+y+z=0 thì x^3 +y^3+z^3=3xyz

27 tháng 5 2020

1 1 1 1 A H B D K C O

a, Xét 2 tam giác : AOB và COD

\(\widehat{A_1}=\widehat{C_1}\)( 2 góc so le trong )

\(\widehat{B_1}=\widehat{D_1}\)( 2 góc so le trong )

\(\Rightarrow\Delta AOB~\Delta COD\left(gg\right)\)

\(\Rightarrow\frac{AO}{OC}=\frac{OB}{OD}\)

\(\Rightarrow AO.OD=OC.OB\)

b, \(\Delta AOB~\Delta COD\Rightarrow\frac{OA}{OC}=\frac{AB}{CD}\left(1\right)\)

\(\Delta AOH\)và \(\Delta COK\)có :

\(\Rightarrow\frac{OH}{OK}=\frac{AO}{OC}\left(2\right)\)

Từ (1)(2) => \(\frac{OH}{OK}=\frac{AB}{CD}\)