cho x và y>0 và x+y=xy tìm min S=x+y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A = \(\frac{\sqrt{5}+3}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{3-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
\(=\frac{\sqrt{10}+3\sqrt{2}}{2+\sqrt{6+2\sqrt{5}}}+\frac{3\sqrt{2}-\sqrt{10}}{2-\sqrt{3-\sqrt{5}}}\)
\(=\frac{\sqrt{10}+3\sqrt{2}}{2+\left(1+\sqrt{5}\right)}+\frac{3\sqrt{2}-\sqrt{10}}{2-\left(\sqrt{5}-1\right)}\)
\(=\sqrt{2}+\sqrt{2}\)
\(=2\sqrt{2}\)
a, Với \(x\ge0;x\ne1\)
\(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{4}{x-1}\)
\(=\frac{x+2\sqrt{x}+1-x+2\sqrt{x}-1}{x-1}-\frac{4}{x-1}=\frac{4\sqrt{x}-4}{x-1}=\frac{4}{\sqrt{x}+1}\)
b, Ta có : \(A=\frac{1}{2}\Rightarrow\frac{4}{\sqrt{x}+1}=\frac{1}{2}=\frac{4}{8}\Rightarrow\sqrt{x}+1=8\Leftrightarrow\sqrt{x}=7\Leftrightarrow x=49\)
Vậy x = 49 thì A = 1/2
c, Ta có : \(x=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}+1-\sqrt{3}+1=2\)
Thay vào biểu thức A ta được : \(A=\frac{4}{\sqrt{2}+1}=4\left(\sqrt{2}-1\right)\)
d, Để x thuộc Z khi \(\sqrt{x}+1\) là ước của 4 = { \(\pm1;\pm2;\pm4\)}
\(\sqrt{x}+1\) | 1 | -1 | 2 | -2 | 4 | -4 |
\(\sqrt{x}\) | 0 | -2 | 1 | -3 | 3 | -5 |
x | 0 | loại | 1 | loại | 9 | loại |
TH1 : Thay x = 0 vào biểu thức A ta được : \(\frac{4}{\sqrt{x}+1}\Rightarrow\frac{4}{0+1}=4\)* đúng *
Vì giá trị A là số tự nhiên
TH2 : Thay x = 1 vào biểu thức A ta được : \(\frac{4}{2}=2\)* đúng *
Vì giá trị A là số tự nhiên
TH3 : Thay x = 9 vào biểu thức A ta được : \(\frac{4}{3+1}=1\)* đúng *
Vì giá trị A là số tự nhiên
Ps : tương tự với bài 2 nhé
\(BH=\frac{AB^2}{BC}=\frac{3^2}{6}=1,5\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}=\sqrt{6^2-3^2}=3\sqrt{3}cm\).
\(AH=\frac{AB.AC}{BC}=\frac{3\sqrt{3}}{2}\left(cm\right)\)
Gọi \(D,E\)lần lượt là giao điểm của đường tròn \(\left(H\right)\)với \(AB,BC\).
\(\widehat{HDB}=\widehat{HBD}=arccos\frac{3}{6}=60^o\Rightarrow\Delta HBD\)đều.
Diện tích quạt \(HBD\)là: \(\frac{60}{360}.\pi.BH^2=\frac{1}{6}.3,14.1,5^2=1,1775\left(cm^2\right)\)
DIện tích tam giác \(HBD\)là: \(\frac{1,5^2\sqrt{3}}{4}=\frac{9\sqrt{3}}{16}\left(cm^2\right)\)
Diện tích phần không màu nằm ngoài hình tam giác là: \(1,1775-\frac{9\sqrt{3}}{16}\left(cm^2\right)\)
Diện tích phần không màu nằm trong hình tam giác là:
\(\frac{1}{2}.\pi.1,5^2-\left(1,1775-\frac{9\sqrt{3}}{16}\right)cm^2\).
Diện tích tam giác là: \(\frac{1}{2}.3.3\sqrt{3}=\frac{9\sqrt{3}}{2}\left(cm^2\right)\)
Diện tích phần tô đậm là: \(\frac{9\sqrt{3}}{2}-\left[\frac{1}{2}.\pi.1,5^2-\left(1,1775-\frac{9\sqrt{3}}{16}\right)\right]\approx4,5\left(cm^2\right)\)
\(a,\hept{\begin{cases}x\ge1\\x\le3\end{cases}}\)
\(1\le x\le3\)thì biểu thức được xác định
\(b,\frac{\sqrt{x-2}}{\sqrt{2x-1}}\)
để biểu thức đc xác định thì
\(\sqrt{x-2}\ge0\)
\(x\ge2\)
\(\sqrt{2x-1}\ne0< =>\sqrt{2x-1}>0\)
\(x>\frac{1}{2}\)
kết hợp điều kiện thì \(x\ge2\)
\(C=\frac{\sqrt{x}-1+\sqrt{x}+1}{x-1}.\frac{2}{\sqrt{x}}\)
\(C=\frac{2\sqrt{x}}{x-1}.\frac{2}{\sqrt{x}}\)
\(C=\frac{4}{x-1}\)
\(< =>x\ne0\)để biểu thức đc xđ
a, \(A=\left(\frac{1}{1-\sqrt{x}}+\frac{1}{1+\sqrt{x}}\right):\left(\frac{1}{1-\sqrt{x}}-\frac{1}{1+\sqrt{x}}\right)+\frac{1}{1-\sqrt{x}}\)ĐK : \(x>0;x\ne1\)
\(=\left(\frac{1+\sqrt{x}+1-\sqrt{x}}{1-x}\right):\left(\frac{1+\sqrt{x}-1+\sqrt{x}}{1-x}\right)+\frac{1}{1-\sqrt{x}}\)
\(=\frac{2}{1-x}.\frac{1-x}{2\sqrt{x}}+\frac{1}{1-\sqrt{x}}=\frac{1}{\sqrt{x}}+\frac{1}{1-\sqrt{x}}=\frac{1-\sqrt{x}+\sqrt{x}}{-x+\sqrt{x}}=\frac{1}{\sqrt{x}-x}\)
b, Ta có : \(x=7+4\sqrt{3}=7+2.2\sqrt{3}=\left(\sqrt{4}+\sqrt{3}\right)^2\)
\(A=\frac{1}{\sqrt{4}+\sqrt{3}-7+4\sqrt{3}}\)
\(A^2=\frac{2\sqrt[4]{8}-2\sqrt{\sqrt{2}+1}}{2\sqrt[4]{8}-2\sqrt{\sqrt[4]{8}^2-\sqrt{\sqrt{2}+1}^2}}\)
biến đổi được \(\sqrt[4]{8}^2-\sqrt{\sqrt{2}+1}^2=\sqrt[4]{64}-\sqrt{2}+1=\sqrt[4]{2^4.\sqrt{2}^4}-\sqrt{2}+1=2\sqrt{2}-\sqrt{2}+1=\sqrt{2}+1\)
Suy ra A = 1
Đặt A = \(\frac{1}{6}\left(10^n+a+b\right)=\frac{1}{6}\left(10^n-2020+a+1+b+2019\right)\)
Vì \(\hept{\begin{cases}a+1⋮6\\b+2019⋮6\end{cases}\Rightarrow a+1+b+2019⋮6\Rightarrow\frac{1}{6}\left(a+1+b+2019\right)\inℕ}\)(1)
Để \(A\inℕ\Rightarrow10^n-2020⋮6\)
Nhận thấy 10n = (4 + 6)n = 4 +B(6)
=> 10n chia 6 dư 4
mà 2020 chia 6 dư 4
=> 10n - 2020 \(⋮\)6
=> \(\frac{1}{6}\left(10^n-2020\right)\inℕ\)(2)
Từ (1) và (2) => A \(\inℕ\)
Đặt \(x=a,1+y=b\).
Ta có:
\(a^3+b^3=2ab\)
\(\Leftrightarrow a^4+ab^3=2a^2b\)
\(\Leftrightarrow\left(a^2-b\right)^2-b^2=-ab^3\)
\(\Leftrightarrow\left(a^2-b\right)^2=b^2\left(1-ab\right)\)
\(\Leftrightarrow1-ab=\left(\frac{a^2-b}{b}\right)^2\)
Ta có đpcm.
Ta có: \(x+y=xy\Leftrightarrow\frac{1}{x}+\frac{1}{y}=1\)
Mà \(\frac{1}{x}+\frac{1}{y}\ge\frac{\left(1+1\right)^2}{x+y}=\frac{4}{x+y}\)
\(\Rightarrow\frac{4}{x+y}\le1\Rightarrow x+y\ge4\)
Dấu "=" xảy ra khi: \(x=y=2\)