K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2021

A B C H 5 5căn3

Xét tam giác ABC vuông tại A, đường cao AH

Áp dụng định lí Pytago cho tam giác ABC vuông tại A

\(BC^2=AB^2+AC^2=25+75=100\Rightarrow BC=10\)cm 

* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{25}+\frac{1}{75}=\frac{100}{1875}\)

\(\Rightarrow100AH^2=1875\Leftrightarrow AH^2=\frac{75}{4}\Leftrightarrow AH=\frac{5\sqrt{3}}{2}\)cm

* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{25}{10}=\frac{5}{2}\)cm

* Áp dụng hệ thức \(AC^2=CH.BC\Rightarrow CH=\frac{AC^2}{BC}=\frac{75}{10}=\frac{15}{2}\)cm

19 tháng 6 2021

A B C D E F H P K I G M O

c) Gọi K là giao điểm của EF và AH, I và G lần lượt là trung điểm của EF và AH.

Ta thấy \(\left(DKHA\right)=-1\),G là trung điểm của HA => \(DK.DG=DH.DA=DB.DC\)

=> K là trực tâm của \(\Delta\)BGC => CK vuông góc BG

Vì CK vuông góc BG, BH vuông góc AC nên \(\widehat{ACK}=\widehat{HBG}\)(1)

Ta có \(\widehat{AEF}=\widehat{ABC}=\widehat{APC}\)=> (P,K,E,C)cyc => \(\widehat{ACK}=\widehat{APM}=\widehat{ABM}\)(2)

Lại có \(\Delta\)BFE ~ \(\Delta\)BHA, I và G lần lượt là trung điểm của FE và HA => \(\widehat{HBG}=\widehat{FBI}\)(3)

Từ (1);(2);(3) suy ra \(\widehat{ABM}=\widehat{FBI}\), mà BF trùng BA nên B,I,M thẳng hàng hay BM chia đôi EF.

20 tháng 6 2021

Bạn tham khảo thêm cách này:

Ta có \(\widehat{FGE}+\widehat{FDE}=2\widehat{BAC}+(180^0-2\widehat{BAC})=180^0\)

=> Tứ giác FGED nội tiếp, vì DG là phân giác góc EDF nên \(\Delta\)DFK ~ \(\Delta\)DGE (g.g)

=> \(DK.DG=DE.DF\)

Lại có \(\Delta\)DBF ~ \(\Delta\)DEC (g.g) => \(DE.DF=DB.DC\)

Suy ra \(DK.DG=DB.DC\)=> \(\Delta\)BDK ~ \(\Delta\)GDC (c.g.c) 

=> \(\widehat{DBK}=\widehat{DGC}\). Mà \(\widehat{DGC}\)phụ \(\widehat{GCB}\)nên BK vuông góc GC

Vậy K là trực tâm tam giác BGC.

16 tháng 6 2021

mày rip rồi con ạ

sorry 

mình mới học lớp 5 nên chắc ko giải được bài này

16 tháng 6 2021

b, \(\sqrt{7-4\sqrt{3}}=\sqrt{7-2.2\sqrt{3}}=\sqrt{4-2.2\sqrt{3}+3}\)

\(=\sqrt{\left(2-\sqrt{3}\right)^2}=\left|2-\sqrt{3}\right|=2-\sqrt{3}\)

c, \(\sqrt{21-8\sqrt{5}}=\sqrt{21-2.4\sqrt{5}}=\sqrt{16-2.4\sqrt{5}+5}\)

\(=\sqrt{\left(4-\sqrt{5}\right)^2}=\left|4-\sqrt{5}\right|=4-\sqrt{5}\)

d, \(\sqrt{\frac{9}{4}-\sqrt{2}}=\sqrt{\frac{9-4\sqrt{2}}{4}}=\frac{\sqrt{9-2.2\sqrt{2}}}{2}\)

\(=\frac{\sqrt{\left(2\sqrt{2}\right)^2-2.2\sqrt{2}+1}}{2}=\frac{\sqrt{\left(2\sqrt{2}-1\right)^2}}{2}=\frac{2\sqrt{2}-1}{2}\)

16 tháng 6 2021

bổ sung phần a nhé, mình quên làm

\(\sqrt{13-4\sqrt{3}}=\sqrt{13-2.2\sqrt{3}}\)

\(=\sqrt{\left(2\sqrt{3}\right)^2-2.2\sqrt{3}+1}=\sqrt{\left(2\sqrt{3}-1\right)^2}\)

\(=\left|2\sqrt{3}-1\right|=2\sqrt{3}-1\)

16 tháng 6 2021

1) G/s 2 điểm đó là \(A\left(-1;y_1\right)\) và \(B\left(2;y_2\right)\)

\(\Rightarrow\hept{\begin{cases}y_1=-\left(-1\right)^2=-1\\y_2=-2^2=-4\end{cases}}\)

\(\Rightarrow A\left(-1;-1\right)\) và \(B\left(2;-4\right)\)

PT đường thẳng đó công thức là \(y=ax+b\Rightarrow\hept{\begin{cases}-a+b=-1\\2a+b=-4\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-1\\b=-2\end{cases}}\)

Vậy PT đường thẳng đó là \(y=-x-2\)

16 tháng 6 2021

2) 

a) Với m = -1 : \(x^2-2\cdot\left(-1-1\right)x--1-3=0\)

\(\Leftrightarrow x^2+4x-2=0\)

\(\Leftrightarrow\left(x+2\right)^2=6\Rightarrow x=-2\pm\sqrt{6}\)

b) \(\Delta^'=\left[-\left(m-1\right)\right]^2-1\cdot\left(-m-3\right)\)

\(=m^2-2m+1+m+3=m^2-m+4>0\left(\forall m\right)\)

=> PT luôn có 2 nghiệm phân biệt với mọi m

Theo hệ thức viet: \(\hept{\begin{cases}x_1+x_2=2m-2\\x_1x_2=-m-3\end{cases}}\)

Ta có: \(x_1^2+x_2^2=14\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=14\)

\(\Leftrightarrow\left(2m-2\right)^2-2\left(-m-3\right)=14\)

\(\Leftrightarrow4m^2-8m+4+2m+6-14=0\)

\(\Leftrightarrow4m^2-6m-4=0\)

\(\Leftrightarrow2m^2-3m-2=0\)

\(\Leftrightarrow m\left(2m+1\right)-2\left(2m+1\right)=0\)

\(\Leftrightarrow\left(m-2\right)\left(2m+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}m=2\\m=-\frac{1}{2}\end{cases}}\left(tm\right)\)

Vậy \(m\in\left\{2;-\frac{1}{2}\right\}\)

DD
16 tháng 6 2021

Gọi vận tốc dòng nước là \(x\left(km/h\right),0< x< 20\).

Vận tốc của cano khi đi xuôi dòng là: \(20+x\left(km/h\right)\).

Vận tốc của cano khi đi ngược dòng là: \(20-x\left(km/h\right)\)

Theo bài ra, ta có phương trình: 

\(\frac{30}{20+x}+\frac{24}{20-x}=3\)

\(\Leftrightarrow\frac{30\left(20-x\right)+24\left(20+x\right)}{\left(20+x\right)\left(20-x\right)}=\frac{3\left(20+x\right)\left(20-x\right)}{\left(20+x\right)\left(20-x\right)}\)

\(\Rightarrow200-10x+160+8x=400-x^2\)

\(\Leftrightarrow x^2-2x-40=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1+\sqrt{41}\left(tm\right)\\x=1-\sqrt{41}\left(l\right)\end{cases}}\)

16 tháng 6 2021

Xét bài toán phụ sau:

Nếu \(a+b+c=0\Leftrightarrow\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\)  \(\left(a,b,c\ne0\right)\)

Thật vậy

Ta có: \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)}\)

\(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-2\cdot\frac{a+b+c}{abc}}=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-2\cdot\frac{0}{abc}}\)

\(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\)

Bài toán được chứng minh

Quay trở lại, ta sẽ áp dụng bài toán phụ vào bài chính:

Ta có: \(P=\sqrt{\frac{1}{2^2}+\frac{1}{1^2}+\frac{1}{3^2}}+\sqrt{\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{5^2}}+...+\sqrt{\frac{1}{2^2}+\frac{1}{779^2}+\frac{1}{801^2}}\)

Vì \(2+1+\left(-3\right)=0\) nên:

\(\sqrt{\frac{1}{2^2}+\frac{1}{1^2}+\frac{1}{3^2}}=\sqrt{\frac{1}{2^2}+\frac{1}{1^2}+\frac{1}{\left(-3\right)^2}}=\sqrt{\left(\frac{1}{2}+\frac{1}{1}-\frac{1}{3}\right)^2}=\frac{1}{2}+1-\frac{1}{3}\)

Tương tự ta tính được:

\(\sqrt{\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{5^2}}=\frac{1}{2}+\frac{1}{3}-\frac{1}{5}\) ; ... ; \(\sqrt{\frac{1}{2^2}+\frac{1}{799^2}+\frac{1}{801^2}}=\frac{1}{2}+\frac{1}{799}-\frac{1}{801}\)

\(\Rightarrow P=\frac{1}{2}+1-\frac{1}{3}+\frac{1}{2}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2}+\frac{1}{799}-\frac{1}{801}\)

\(=\frac{1}{2}\cdot400+\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{799}-\frac{1}{801}\right)\)

\(=200+\frac{800}{801}=\frac{161000}{801}=\frac{a}{b}\Rightarrow\hept{\begin{cases}a=161000\\b=801\end{cases}}\)

\(\Rightarrow Q=161000-801\cdot200=800\)

16 tháng 6 2021

\(a,\sqrt{22-8\sqrt{6}}\)

\(\sqrt{4^2-8\sqrt{6}+\sqrt{6}^2}\)

\(\sqrt{\left(4-\sqrt{6}\right)^2}=\left|4-\sqrt{6}\right|\)

\(4>\sqrt{6}< =>\left|4-\sqrt{6}\right|=4-\sqrt{6}\)

\(b,\sqrt{16-6\sqrt{7}}\)

\(\sqrt{3^2-6\sqrt{7}+\sqrt{7}^2}\)

\(\sqrt{\left(3-\sqrt{7}\right)^2}\)

\(\left|3-\sqrt{7}\right|\)

\(=3-\sqrt{7}\)

\(c,\sqrt{9-4\sqrt{2}}\)

\(\sqrt{9-2.2\sqrt{2}}\)

\(\sqrt{\left(2\sqrt{2}\right)^2-2.2\sqrt{2}+1}\)

\(\sqrt{\left(2\sqrt{2}-1\right)^2}\)

\(2\sqrt{2}>1\)

\(\left|2\sqrt{2}-1\right|=2\sqrt{2}-1\)